
11/16/16	

1	

Objec*ves	
• Team	Final	Project:	SLogo	Code	Explora*on	

Nov	16,	2016	 Sprenkle	-	CSCI209	 1	

Common	Refactoring	Thought	
•  In	Factory	

Nov	16,	2016	 Sprenkle	-	CSCI209	 2	

private static final Random ourGenerator = new Random();

public int nextIntInRange(int min, int max) {
return ourGenerator.nextInt(max - min + 1) + min;

}

11/16/16	

2	

Review	
• What	is	the	final	project?	
• What	do	you	think	you	will	learn	from	this	
project?	

Nov	16,	2016	 Sprenkle	-	CSCI209	 3	

Team	Project	
•  Benefits	

Ø Gaining	experience	
Ø Wri*ng	a	larger	code	base	
Ø  Learn	how	to	learn	new	

things	
Ø Dealing	with	ambiguity	
Ø Working	with	a	team	on	

code	
Ø Depth	on	part	of	the	

project	

•  Limita*ons	
Ø Hard	to	get	breadth	on	

project	

Nov	16,	2016	 Sprenkle	-	CSCI209	 4	

11/16/16	

3	

Review:	Project	Deliverables	Timeline	

Deliverable	 Who	 Weight	 Due	Date	
Prepara*on	 Individual	 8%	 Fri,	11/18	
Preliminary	

Implementa*on,	Demo	 Team	 20%	 Wed,	11/30	

Intermediate	
Implementa*on,	Demo	 Team	 22%	 Wed,	12/6	

Final	Implementa*on	 Team	 35%	

You	decide	
àlatest	Thursday	

12/15,		
midnight	

Analysis	 Individual	 15%	 12/16,	5	p.m.	

Nov	16,	2016	 Sprenkle	-	CSCI209	 5	

Worth	20%	of	your	course	grade	

Review:	SLogo	Project	Overview	
• Goal:	Create	an	IDE	for	simplified	version	of	Logo	
• Logo:	programming	language	designed	to	teach	
children	to	program	
Ø Low	floor,	high	ceiling	

Nov	16,	2016	 Sprenkle	-	CSCI209	 6	

11/16/16	

4	

Code	Base	Explora*on	
• Create	a	picture	of	the	given	code	base	

Ø What	are	the	main	classes?		How	are	they	related?	
Ø Any	processes	that	you	can	enumerate?	

Nov	16,	2016	 Sprenkle	-	CSCI209	 7	

5 minutes

Exploring	Code	Guidelines	
• Try	to	get	the	big	picture	

Ø Skip	over	parts	that	you	don’t	understand—mark	
with	a	black	box	

•  Iterate	over	the	code	
Ø May	not	be	immediately		
Ø Fill	in	the	black	box	boxes,	as	necessary/appropriate	

• Draw	pictures	if	you	can’t	keep	the	mental	model	

Nov	16,	2016	 Sprenkle	-	CSCI209	 8	

Deal with ambiguity

11/16/16	

5	

Review:	Programming	Language	Syntax	
• What	does	an	iden*fier	look	like	in	Java?	
• What	does	an	assignment	statement	look	like	in	
Java?	

• What	can	be	on	the	lee	hand	side?	
• What	can	be	on	the	right	hand	side?	

• What	does	a	mul*plica*on	look	like?	
• How	do	we	evaluate	arithme*c	expressions?	

Nov	16,	2016	 Sprenkle	-	CSCI209	 9	

Programming	Language	Design	
• Must	be	unambiguous	

Ø Programming	Language	defines	a	syntax	and	
seman*cs	

•  Interpre*ng	programming	languages	
Ø Parse	program	into	tokens	

• Example:	x	=	4*3;	à		

Ø Verify	that	tokens	are	in	a	valid	form	
Ø Generate	executable	code	

Nov	16,	2016	 Sprenkle	-	CSCI209	 10	

<id> <assignment> <num> <mult> <num> <endofstmt>

11/16/16	

6	

Interpre*ng	a	Language	

Nov	16,	2016	 Sprenkle	-	CSCI209	 11	

Lexical	
Analyzer	

Seman*c	
Analyzer	

Error	

Error	

Expression
Tree

Interpreter	

User’s	
Input	

Token	Token	Tokens	

OR

OR

Evaluation of
expression

Draw on
canvas

A file or an expression

Interpre*ng	a	Language	

Nov	16,	2016	 Sprenkle	-	CSCI209	 12	

Lexical	
Analyzer	

Seman*c	
Analyzer	

Error	

Error	

Expression
Tree

Interpreter	

User’s	
Input	

Token	Token	Tokens	

OR

OR

Evaluation of
expression

Draw on
canvas

FORWARD SUM 10 10

11/16/16	

7	

What	We	Need	to	Do/Represent	
• Lexical	Analysis	

• Seman*c	Analysis	

• Evalua*on	

Nov	16,	2016	 Sprenkle	-	CSCI209	 13	

What	We	Need	to	Do/Represent	
• Lexical	Analysis	

Ø Recognize/create	tokens	
Ø Report	errors	in	crea*ng	tokens	

• Seman*c	Analysis	
Ø Parse	tokens	into	expressions	
Ø Report	errors	

• Evalua*on	
Ø Evaluate	expressions	with	respect	to	turtle/model	

Nov	16,	2016	 Sprenkle	-	CSCI209	 14	

11/16/16	

8	

Understanding	the	Code	
• How	does	the	given	code	map	to	lexical	analysis,	
seman*c	analysis,	and	evalua*on	components?	

Nov	16,	2016	 Sprenkle	-	CSCI209	 15	

Interpre*ng	SLogo	Language	

Nov	16,	2016	 Sprenkle	-	CSCI209	 16	

Lexical	
Analyzer	

Seman*c	
Analyzer	

Error	

Error	

Expression
Tree

Interpreter	

User’s	Input	

Token	Token	Tokens	

OR	

OR	

Evaluation of
expression

Draw on
canvas

tokens

parser
expressions/instructions

Java’s StreamTokenizer

SLogoInterpreter

11/16/16	

9	

Understanding	the	Code:		
Lexical	Analysis	
•  Important	classes	

Ø slogo.SLogoInterpreter
Ø slogo.parser.tokens.TokenFactory

• Output:	slogo.parser.token.*

Nov	16,	2016	 Sprenkle	-	CSCI209	 17	

PrintToken

Understanding	the	Code:	
Seman*c	Analysis	
•  Important	Classes	

Ø Common	interface: slogo.parser.Parser
Ø slogo.parser.*Parser

• Ex:	slogo.parser.ExpressionParser
Ø slogo.parser.InstructionParser

• Decides	which	instruc*on	parser	to	call
• Output:	slogo.expression.* or
slogo.instruction.*

Nov	16,	2016	 Sprenkle	-	CSCI209	 18	
PrintParser

11/16/16	

10	

Understanding	the	Code:	
Evalua*on	
•  Important	Classes	

Ø Base	class: slogo.GrammarElement
Ø Subclasses:
• slogo.instruction.Instruction
• slogo.expression.ArithmeticBase
• slogo.instruction.Assignment

• Key	method:	evaluate(Context c)
Ø returns	Object

Nov	16,	2016	 Sprenkle	-	CSCI209	 19	

Print

Bringing	it	together	
• slogo.*

Ø Breaks	classes	into	appropriate	packages:	Tokens,	
Expressions,	Instruc*ons,	Parsers	

• slogo.parser	
Ø Parse	Tokens	to	create	Instruc*ons	

• slogo.instructions	
Ø Represent	instruc*ons	
Ø evaluate method	

Nov	16,	2016	 Sprenkle	-	CSCI209	 20	

11/16/16	

11	

Bringing	it	together	
• Mapping	between	Token, Instruction,
Parser
Ø Knows	which	Parser	to	call	based	on	
instructions.prop	and	mapping	from	Token	
to	Parser

• Run	SLogoInterpreter

Nov	16,	2016	 Sprenkle	-	CSCI209	 21	

Trace	through	Logo	programs	
• What	happens	when	print.logo	is	
interpreted?	
Ø Assign	parts	to	team	members	

• One	team	member	should	add	the	file	
repeat.logo	to	slogo_programs	

• Contents	of	file:		

Nov	16,	2016	 Sprenkle	-	CSCI209	 22	

x = 4
REPEAT x [PRINT 7 PRINT x]

11/16/16	

12	

Prac*ce	Adding	Instruc*ons	
1.  Create	a	token	for	instruc*on	

Ø Likely	a	subclass	of	token.ReservedToken
Ø Same	prefix	as	new	instruc*on,	e.g.,	IfToken.java

2.  Create	a	parser	for	the	instruc*on	with	same	prefix	
as	instruc*on,	e.g.,	IfParser.java
Ø Parsing	class	(presumably	implemen*ng	Parser)	
returns	an	instance	of	parsed	Instruc*on	

3.  Create	an	instruc*on	with	prefix	name,	e.g.,	
If.java

4.  Add	instruc*on	name	to	file	
instructions.prop,	e.g.,	add	a	single	line	to	
file	containing	string	If		

Nov	16,	2016	 Sprenkle	-	CSCI209	 23	

Brainstorming	
• What	do	you	need	to	do	to	complete	the	
project?	

• What	do	you	“see”	for	the	final	project?	
• What’s	going	to	change?	
• Where	do	you	think	you’ll	run	into	problems?	
• To	focus	your	thinking,	consider	this	use	case:	
"The	user	starts	the	program,	types	'fd	50'	in	the	
command	window,	and	sees	the	turtle	move	in	
the	display	window	leaving	a	trail.”	
Ø What	are	other	use	cases?	

Nov	16,	2016	 Sprenkle	-	CSCI209	 24	

11/16/16	

13	

Prepara*on	Analysis	
•  What	are	the	main	parts/steps	that	need	to	be	completed	to	complete	

the	project?	
Ø  How	much	work	does	each	part	require?		

•  Approximate	in	terms	of	*me	or	rela*ve	to	the	other	steps.	
Ø  How	many	people	should	work	on	each	part?	

•  How	will	your	program	handle	the	following	use	case:	"The	user	starts	
the	program,	types	'fd	50'	in	the	command	window,	and	sees	the	turtle	
move	in	the	display	window	leaving	a	trail.”?	
Ø  From	your	descrip*on,	it	should	be	clear	which	classes/objects	are	

responsible	for	comple*ng	each	part	of	the	task.		
•  What	3	extensions	would	you	like	to	have	in	the	final	applica*on?	
•  A	plan	for	how	you	would	tackle	implemen*ng	the	project	

Ø  What	parts	can	be	completed	independently	of	the	other	parts?	
Ø  What	parts	need	to	be	completed	before	other	parts?	

•  The	parts	of	the	project	you're	most	interested	in	working	on,	in	ranked	
order.	

•  Any	ques*ons	about	the	given	specifica*on.		
Nov	16,	2016	 Sprenkle	-	CSCI209	 25	

Due Friday

TODO	
• Project	Analysis	due	Friday	

Nov	16,	2016	 Sprenkle	-	CSCI209	 26	

