Objectives

Team Final Project: SLogo Code Exploration

Nov 16, 2016 Sprenkle - CSCI209 1

Common Refactoring Thought
In Factory

private static final Random ourGenerator = new Random();

public int nextIntInRange(int min, int max) {
return ourGenerator.nextInt(max - min + 1) + min;
ks

Nov 16, 2016 Sprenkle - CSCI209 2

Review

What is the final project?

What do you think you will learn from this

project?

Nov 16, 2016 Sprenkle - CSCI209

Team Project

Benefits

» Gaining experience

» Writing a larger code base

» Learn how to learn new
things

» Dealing with ambiguity

» Working with a team on
code

» Depth on part of the
project

Limitations
» Hard to get breadth on
project

Nov 16, 2016 Sprenkle - CSCI209

Review: Project Deliverables Timeline

Worth 20% of your course grade

Preparation Individual 8% Fri, 11/18

Preliminary

0,
Implementation, Demo UEr g Wed,11/30

Intermediate

0,
Implementation, Demo Ll L i, Ajte
You decide
. . latest Thursday
0,
Final Implementation Team 35% 12/15,
midnight
Analysis Individual 15% 12/16, 5 p.m.
Nov 16, 2016 Sprenkle - CSCI209 5

Review: SLogo Project Overview

Goal: Create an IDE for simplified version of Logo

Logo: programming language designed to teach
children to program
Low floor, high ceiling

s AN
i ﬂ"”’;_’.’ t‘k“““ ‘
K7 N
oo N
b‘.ﬂ?#‘é‘i‘ oy
NNl
NN
R

Nov 16, 2016 Sprenkle - CSCI209 6

. inut
Code Base Exploration > minutes

Create a picture of the given code base
» What are the main classes? How are they related?
» Any processes that you can enumerate?

Nov 16, 2016 Sprenkle - CSCI209 7

Exploring Code Guidelines

Try to get the big picture

» Skip over parts that you don’t understand—mark
with a black box

Deal with ambiguity

Iterate over the code
» May not be immediately
» Fill in the black box boxes, as necessary/appropriate

Draw pictures if you can’t keep the mental model

Nov 16, 2016 Sprenkle - CSCI209 8

Review: Programming Language Syntax

What does an identifier look like in Java?

What does an assignment statement look like in
Java?

What can be on the left hand side?
What can be on the right hand side?

What does a multiplication look like?
How do we evaluate arithmetic expressions?

Nov 16, 2016 Sprenkle - CSCI209 9

Programming Language Design

Must be unambiguous

Programming Language defines a syntax and
semantics

Interpreting programming languages
Parse program into tokens
Example: x = 4*3; >

<i1d> <assignment> <num> <mult> <num> <endofstmt>

Verify that tokens are in a valid form
Generate executable code

Nov 16, 2016 Sprenkle - CSCI209 10

Interpreting a Language

A file or an expression

Lexical
Analyzer

Expression
Evaluation of Tree
expression

[Interpreter hj OR

Draw on
Error

canvas

Semantic
Analyzer

Nov 16, 2016 Sprenkle - CSCI209 11

Interpreting a Language
FORWARD SUM 10 10

Lexical
Analyzer

Expression
Evaluation of Tree
expression

[Interpreter hj OR

Draw on
Error

canvas

Semantic
Analyzer

Nov 16, 2016 Sprenkle - CSCI209 12

What We Need to Do/Represent

Lexical Analysis

Semantic Analysis

Evaluation

Nov 16, 2016 Sprenkle - CSCI209 13

What We Need to Do/Represent

Lexical Analysis
» Recognize/create tokens
» Report errors in creating tokens
Semantic Analysis
» Parse tokens into expressions
» Report errors
Evaluation
» Evaluate expressions with respect to turtle/model

Nov 16, 2016 Sprenkle - CSCI209 14

Understanding the Code

How does the given code map to lexical analysis,
semantic analysis, and evaluation components?

Nov 16, 2016 Sprenkle - CSCI209 15

Interpreting SLogo Language

Java’s StreamTokenizer
OR
User’s Input tokens

SLogolInterpreter
Expression
Evaluation of Tree
expression

Semantic
Interpreter OR | o —
Draw on parser

canvas
expressions/instructions

Nov 16, 2016 Sprenkle - CSCI209 16

Understanding the Code:
Lexical Analysis
Important classes
slogo.SLogoInterpreter
slogo.parser.tokens.TokenFactory

Output: slogo.parser.token.*

PrintToken

Nov 16, 2016 Sprenkle - CSCI209 17

Understanding the Code:
Semantic Analysis
Important Classes
Common interface: slogo.parser.Parser
slogo.parser.*Parser
Ex: slogo.parser.ExpressionParser
slogo.parser.InstructionParser
Decides which instruction parser to call
Output: sLogo.expression.* or
slogo.instruction.*

PrintParser

Nov 16, 2016 Sprenkle - CSCI209 18

Understanding the Code:

Evaluation
Important Classes
Base class: slogo.GrammarElement
Subclasses:
slogo.1instruction.Instruction
slogo.expression.ArithmeticBase
slogo.instruction.Assignment

Key method: evaluate(Context ¢)
returns Object

Print

Nov 16, 2016 Sprenkle - CSCI209 19

Bringing it together

slogo.*

Breaks classes into appropriate packages: Tokens,
Expressions, Instructions, Parsers

slogo.parser
Parse Tokens to create Instructions

slogo.instructions
Represent instructions
evaluate method

Nov 16, 2016 Sprenkle - CSCI209 20

Bringing it together

Mapping between Token, Instruction,
Parser

Knows which Parser to call based on
instructions.prop and mapping from Token
to Parser

Run SLogoInterpreter

Nov 16, 2016 Sprenkle - CSCI209 21

Trace through Logo programs

What happens when print.logois
interpreted?
Assign parts to team members

One team member should add the file
repeat.logoto slogo_programs

Contents of file:

X =4
REPEAT x [PRINT 7 PRINT x]

Nov 16, 2016 Sprenkle - CSCI209 22

Practice Adding Instructions

Create a token for instruction

Likely a subclass of token.ReservedToken

Same prefix as new instruction, e.g., IfToken. java
Create a parser for the instruction with same prefix
as instruction, e.g., IfParser. java

Parsing class (presumably implementing Parser)
returns an instance of parsed Instruction

Create an instruction with prefix name, e.g.,

If.java

Add instruction name to file
1nstructions.prop, e.g., add a single line to
file containing string I

Nov 16, 2016 Sprenkle - CSCI209 23

Brainstorming

What do you need to do to complete the
project?

What do you “see” for the final project?
What’s going to change?

Where do you think you’ll run into problems?

To focus your thinking, consider this use case:
"The user starts the program, types 'fd 50' in the
command window, and sees the turtle move in
the display window leaving a trail.”

What are other use cases?

Nov 16, 2016 Sprenkle - CSCI209 24

Due Friday
Preparation Analysis

What are the main parts/steps that need to be completed to complete
the project?

How much work does each part require?

Approximate in terms of time or relative to the other steps.

How many people should work on each part?
How will your program handle the following use case: "The user starts
the program, types 'fd 50' in the command window, and sees the turtle
move in the display window leaving a trail.”?

From your description, it should be clear which classes/objects are
responsible for completing each part of the task.

What 3 extensions would you like to have in the final application?
A plan for how you would tackle implementing the project
What parts can be completed independently of the other parts?
What parts need to be completed before other parts?

The parts of the project you're most interested in working on, in ranked
order.

Any questions about the given specification.

Nov 16, 2016 Sprenkle - CSCI209 25

TODO

Project Analysis due Friday

Nov 16, 2016 Sprenkle - CSCI209 26

