
9/15/16	

1	

Objec,ves	
• Object-oriented	programming	in	Java	

Ø Encapsula,on	
Ø Access	modifiers	
Ø Using	others’	classes	
Ø Defining	own	classes	

Sept	16,	2016	 Sprenkle	-	CSCI209	 1	

Review:	Object-Oriented	Programming	
• What	is	OO	programming?	

Ø Components?	

• Benefits?	

Sept	16,	2016	 Sprenkle	-	CSCI209	 2	

9/15/16	

2	

Sept	16,	2016	 Sprenkle	-	CSCI209	 3	

Review:	Objects	
• How	object	does	something	doesn’t	maTer	

Ø Example:	if	object	sorts,	does	not	maTer	if	uses	
merge	or	quick	sort	

• What	object	does	maTers	(its	func&onality)	
Ø What	object	exposes	to	other	objects	
Ø Referred	to	as	“black-box	programming”	

Object

•  Has public interface that others can use
•  Hides state from others

Property:	Encapsula,on	
• Encapsula/on:	Combining	data	and	behavior	
(func,onality)	into	one	package	(the	object)	and	
hiding	the	implementa,on	of	the	data	from	the	
user	of	the	object	

	
• Java’s	characteris,cs	allow	us	to	enforce	
encapsula,on	beTer	than	Python	

Sept	16,	2016	 Sprenkle	-	CSCI209	 4	

Object

9/15/16	

3	

Sept	16,	2016	 Sprenkle	-	CSCI209	 5	

Discussion	
• What	is	the	problem	with	white-box	
programming?	

Object	
Object

Can see and manipulate
object’s internals

Classes	&	Objects	
• Classes	define	template	from	which	objects	are	
made	
Ø “Cookie	cuTers”	
Ø Define	state	–	data,	usually	private	
Ø Define	behavior	–	an	object’s	methods,	usually	public	

• Excep,ons?	
• Many	objects	can	be	created	for	a	class	

Ø Object:	the	cookie!	
Ø Ex:	Many	Mustangs	created	from	Ford’s	“blueprint”	
Ø Object	is	an	instance	of	the	class	

Sept	16,	2016	 Sprenkle	-	CSCI209	 6	

9/15/16	

4	

Sept	16,	2016	 Sprenkle	-	CSCI209	 7	

Classes,	Objects,	Methods	
• An	object’s	state	is	stored	in	instance	fields	
• Method:	sequence	of	instruc,ons	that	access/
modify	an	object’s	data	
Ø Accessor:	accesses	(doesn’t	modify)	object	
Ø Mutator:	changes	object’s	data	

Sept	16,	2016	 Sprenkle	-	CSCI209	 8	

Access	Modifiers	
• A	public method	(or	instance	field)	means	
that	any	object	of	any	class	can	directly	access	
the	method	(or	field)	
Ø Least	restric,ve	

• A	private method	(or	instance	field)	means	
that	any	object	of	the	same	class	can	directly	
access	this	method	(or	field)	
Ø Most	restric,ve	

• Addi,onal	access	modifiers	will	be	discussed	with	
inheritance	 In general, what access modifiers will we

use for methods? For instance fields?

9/15/16	

5	

Sept	16,	2016	 Sprenkle	-	CSCI209	 9	

Constructors	
• Constructor:	a	special	method	that	constructs	
and	ini,alizes	an	object	
Ø Ager	construc,on,	can	call	methods	on	object		

• Constructors	have	the	same	name	as	their	classes	

Sept	16,	2016	 Sprenkle	-	CSCI209	 10	

Construc,ng	objects	using	new
• Given	the	File constructor	

File(String pathname)	
• Create	a	new	File object	using	new keyword		

Ø Recall	new	means	allocates	memory	

File myFile = new File("debug.out");

Type/Classname

9/15/16	

6	

Calling	Methods	
• Similar	to	Python	

• Examples	with	String and System classes	

• Review:	to	call	static methods,	use	

Sept	16,	2016	 Sprenkle	-	CSCI209	 11	

<objectname>.<methodname>(<parameters>);

<ClassName>.<methodname>(<parameters>);

CREATING	YOUR	OWN	CLASSES	

Sept	16,	2016	 Sprenkle	-	CSCI209	 12	

9/15/16	

7	

Classes	and	Objects	
• Java	is	pure	object-oriented	programming	

Ø All	data	and	methods	in	a	program	must	be	
contained	within	a	class	

• But,	for	data,	can	use	objects	as	well	as	primi,ve	
types	(e.g.,	int, float, char)	

Sept	16,	2016	 Sprenkle	-	CSCI209	 13	

Sept	16,	2016	 Sprenkle	-	CSCI209	 14	

Example:	Chicken class	
• State	

Ø Name,	weight,	height	

• Behavior		
Ø Accessor	methods	
• getWeight, getHeight, getName
• Conven,on:	“get”	for	“geTer”	methods	

Ø Mutator	methods	
• feed:	adds	weight	and	height	when	bird	eats	
• setName

9/15/16	

8	

General	Java	Class	Structure	

Sept	16,	2016	 Sprenkle	-	CSCI209	 15	

public class ClassName {

 // --------- INSTANCE VARIABLES ---------------
 // define variables that represent object’s state

private int inst_var;

// --------- CONSTRUCTORS ---------------
public ClassName() {

// initialize data structures
}

// ----------- METHODS ------------
public int getInfo() {

return inst_var;
}

}
Note: instance variables are private  
and methods are public

Sept	16,	2016	 Sprenkle	-	CSCI209	 16	

Example:	Chicken class	
• State	

Ø Name,	weight,	height	

• Behavior		
Ø Accessor	methods	
• getWeight, getHeight, getName
• Conven,on:	“get”	for	“geTer”	methods	

Ø Mutator	methods	
• feed:	adds	weight,	height	
• setName

Discussion: data types
for state variables?

9/15/16	

9	

Instance	Variables:	Chicken.java

Sept	16,	2016	 Sprenkle	-	CSCI209	 17	

public class Chicken {

 // --------- INSTANCE VARIABLES ---------------
private String name;
private int height; // in cm
private double weight; // in lbs

All instance variables are private	

Constructor:	Chicken.java

Sept	16,	2016	 Sprenkle	-	CSCI209	 18	

public class Chicken {

 // --------- INSTANCE VARIABLES ---------------
private String name;
private int height; // in cm
private double weight;

// --------- CONSTRUCTORS ---------------
public Chicken(String name, int h,

double weight) {
this.name = name;
this.height = h;
this.weight = weight;

}
…

Observations?

9/15/16	

10	

Constructor:	Chicken.java

Sept	16,	2016	 Sprenkle	-	CSCI209	 19	

public class Chicken {

 // --------- INSTANCE VARIABLES ---------------
private String name;
private int height; // in cm
private double weight;

// --------- CONSTRUCTORS ---------------
public Chicken(String name, int h,

double weight) {
this.name = name;
this.height = h;
this.weight = weight;

}
… this: Special name for the constructed object, �

like self in Python (differentiate from parameters)

Type and name for
each parameterConstructor name same as class’s name

Params don’t need to be same
names as instance var names

Sept	16,	2016	 Sprenkle	-	CSCI209	 20	

Example:	Chicken class	
• State	

Ø Name,	weight,	height	
• Behavior		

Ø Accessor	methods	
• getWeight, getHeight, getName
•  Conven,on:	“get”	for	“geTer”	methods	

Ø Mutator	methods	
• feed:	adds	weight,	height		
• setName Discussion: What are the

methods’ input (parameters) �
and output (what is returned)?

9/15/16	

11	

Methods:	Chicken.java

Sept	16,	2016	 Sprenkle	-	CSCI209	 21	

 …

// --------- Getter Methods ---------------
public String getName() {

return name;
}

// --------- Mutator Methods ---------------
public void feed() {

weight += .2;
height += 1;

}
…

}

Note that you don’t have to use this
when variables are unambiguous

Chicken object’s
instance variables

Type the method returns

Sept	16,	2016	 Sprenkle	-	CSCI209	 22	

Construc,ng	objects
• Given	the	Chicken constructor	

Chicken(String name, int height, double
weight)	

create	three	chickens	
Ø “Fred”,	weight:	2.0,	height:	38	
Ø “Sallie	Mae”,	weight:	3.0,	height:	45	
Ø “Momma”,	weight:	6.0,	height:	83	

9/15/16	

12	

Sept	16,	2016	 Sprenkle	-	CSCI209	 23	

Object	References	
• Variable	of	type	object:	value	is	memory	loca,on	

one =		

two =		

Chicken	

weight	=	

height	=	

name	=	

2.0	

38	

“Fred”	

Chicken	

weight	=	

height	=	

name	=	

3.0	

45	

“Sallie	Mae”	

Memory
Location

Sept	16,	2016	 Sprenkle	-	CSCI209	 24	

Object	References	
• Variable	of	type	object:	value	is	memory	loca,on	

one =

two =

If I haven’t called the constructor, only
declared the variables:
	

 Chicken one;
Chicken two;

	
Both	one and	two	are equal to null

This is the case for objects. Primitive types are not null.

9/15/16	

13	

Sept	16,	2016	 Sprenkle	-	CSCI209	 25	

Null	Object	Variables	
• An	object	variable	can	be	explicitly	set	to	null	

Ø Means	that	the	object	variable	does	not	currently	
refer	to	any	object	

• Can	test	if	an	object	variable	is	set	to	null	

Chicken chick = null;
 … … …
if (chick == null) {

. . .
}

Sept	16,	2016	 Sprenkle	-	CSCI209	 26	

Mul,ple	Object	Variables	
• More	than	one	object	variable	can	refer	to	the	
same	object	

Chicken	

weight	=	

height	=	

name	=	

3.0	

45	

“Sallie	Mae”	

sal	=		

sal2	=		

Chicken sal = new Chicken(“Sallie Mae”);
Chicken sal2 = sal;

9/15/16	

14	

Sept	16,	2016	 Sprenkle	-	CSCI209	 27	27	

More	on	Constructors	
• A	class	can	have	more	than	one	constructor	

Ø Whoa!		Let	that	sink	in	for	a	bit	

• A	constructor	can	have	zero,	one,	or	mul,ple	
parameters	

• A	constructor	has	no	return	value	
• A	constructor	is	always	called	with	the	new	
operator	

Example	of	Overloaded	Constructors	

Sept	16,	2016	 Sprenkle	-	CSCI209	 28	

9/15/16	

15	

Sept	16,	2016	 Sprenkle	-	CSCI209	 29	

Constructor	Overloading	
• Allowing	>	1	constructor	(or	any	method)	with	
the	same	name	is	called	overloading	
Ø Constraint:	Each	of	the	methods	that	have	the	same	
name	must	have	different	parameters	so	that	
compiler	can	dis,nguish	between	them	
• “different” à	Number	and/or	type	

• Compiler	handles	overload	resolu/on	
Ø Process	of	matching	a	method	call	to	the	correct	
method	by	matching	the	parameters	

• No	func,on	overloading	in	Python	

29	overload.py
Why isn’t overloading possible in Python?

Default	Ini,aliza,on	
• If	instance	field	is	not	explicitly	set	in	constructor,	
automa,cally	set	to	default	value	
Ø Numbers	set	to	zero	
Ø Booleans	set	to	false	
Ø Object	variables	set	to	null
Ø Local	variables	are	not	assigned	defaults	

• Do	not	rely	on	defaults	
Ø Code	is	harder	to	understand	

Sept	16,	2016	 Sprenkle	-	CSCI209	 30	30	

Clean Code Recommendation:
Set all instance fields in the constructor(s)

9/15/16	

16	

Sept	16,	2016	 Sprenkle	-	CSCI209	 31	

Explicit	Field	Ini,aliza,on	
• If	more	than	one	constructor	needs	an	instance	
field	set	to	same	value,	the	field	can	be	set	
explicitly	in	the	field	declara,on	

class Chicken {
private String name = "";
. . .

}

Set value here for
all constructors

Sept	16,	2016	 Sprenkle	-	CSCI209	 32	

Explicit	Field	Ini,aliza,on	
• Or	in	a	sta,c	method	call	

class Employee {
private int id = assignID();
. . .
private static int assignID() {

int r = nextID;
nextID++;
return r;

}
}

More on static later…

9/15/16	

17	

Sept	16,	2016	 Sprenkle	-	CSCI209	 33	Sprenkle	-	CS209	 33	

Explicit	Field	Ini,aliza,on	
• Explicit	field	ini,aliza,on	happens	before	any	
constructor	runs	

• A	constructor	can	change	an	instance	field	that	
was	set	explicitly		

• If	the	constructor	does	not	set	the	field	explicitly,	
explicit	field	ini,aliza,on	is	used	
class Chicken {

private String name = "";
public Chicken(String name, …) {

this.name = name;
…

}
…

Change explicit
field initialization

