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Objec,ves	
• Object-oriented	programming	in	Java	

Ø Encapsula,on	
Ø Access	modifiers	
Ø Using	others’	classes	
Ø Defining	own	classes	
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Review:	Object-Oriented	Programming	
• What	is	OO	programming?	

Ø Components?	

• Benefits?	
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Review:	Objects	
• How	object	does	something	doesn’t	maTer	

Ø Example:	if	object	sorts,	does	not	maTer	if	uses	
merge	or	quick	sort	

• What	object	does	maTers	(its	func&onality)	
Ø What	object	exposes	to	other	objects	
Ø Referred	to	as	“black-box	programming”	

Object

•  Has public interface that others can use
•  Hides state from others

Property:	Encapsula,on	
• Encapsula/on:	Combining	data	and	behavior	
(func,onality)	into	one	package	(the	object)	and	
hiding	the	implementa,on	of	the	data	from	the	
user	of	the	object	

	
• Java’s	characteris,cs	allow	us	to	enforce	
encapsula,on	beTer	than	Python	
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Object
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Discussion	
• What	is	the	problem	with	white-box	
programming?	

Object	
Object

Can see and manipulate 
object’s internals

Classes	&	Objects	
• Classes	define	template	from	which	objects	are	
made	
Ø “Cookie	cuTers”	
Ø Define	state	–	data,	usually	private	
Ø Define	behavior	–	an	object’s	methods,	usually	public	

• Excep,ons?	
• Many	objects	can	be	created	for	a	class	

Ø Object:	the	cookie!	
Ø Ex:	Many	Mustangs	created	from	Ford’s	“blueprint”	
Ø Object	is	an	instance	of	the	class	
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Classes,	Objects,	Methods	
• An	object’s	state	is	stored	in	instance	fields	
• Method:	sequence	of	instruc,ons	that	access/
modify	an	object’s	data	
Ø Accessor:	accesses	(doesn’t	modify)	object	
Ø Mutator:	changes	object’s	data	
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Access	Modifiers	
• A	public method	(or	instance	field)	means	
that	any	object	of	any	class	can	directly	access	
the	method	(or	field)	
Ø Least	restric,ve	

• A	private method	(or	instance	field)	means	
that	any	object	of	the	same	class	can	directly	
access	this	method	(or	field)	
Ø Most	restric,ve	

• Addi,onal	access	modifiers	will	be	discussed	with	
inheritance	 In general, what access modifiers will we 

use for methods?  For instance fields?
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Constructors	
• Constructor:	a	special	method	that	constructs	
and	ini,alizes	an	object	
Ø Ager	construc,on,	can	call	methods	on	object		

• Constructors	have	the	same	name	as	their	classes	
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Construc,ng	objects	using	new
• Given	the	File constructor	

File( String pathname )	
• Create	a	new	File object	using	new keyword		

Ø Recall	new	means	allocates	memory	

File myFile = new File("debug.out");

Type/Classname
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Calling	Methods	
• Similar	to	Python	

• Examples	with	String and System classes	

• Review:	to	call	static methods,	use	
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<objectname>.<methodname>(<parameters>);

<ClassName>.<methodname>(<parameters>);

CREATING	YOUR	OWN	CLASSES	
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Classes	and	Objects	
• Java	is	pure	object-oriented	programming	

Ø All	data	and	methods	in	a	program	must	be	
contained	within	a	class	

• But,	for	data,	can	use	objects	as	well	as	primi,ve	
types	(e.g.,	int, float, char)	
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Example:	Chicken class	
• State	

Ø Name,	weight,	height	

• Behavior		
Ø Accessor	methods	
• getWeight, getHeight, getName
• Conven,on:	“get”	for	“geTer”	methods	

Ø Mutator	methods	
• feed:	adds	weight	and	height	when	bird	eats	
• setName
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General	Java	Class	Structure	
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public class ClassName {

   // --------- INSTANCE VARIABLES ---------------
   // define variables that represent object’s state

private int inst_var;

// --------- CONSTRUCTORS ---------------
public ClassName() {

// initialize data structures
}

// ----------- METHODS ------------
public int getInfo() {

return inst_var;
}

}
Note: instance variables are private  
and methods are public
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Example:	Chicken class	
• State	

Ø Name,	weight,	height	

• Behavior		
Ø Accessor	methods	
• getWeight, getHeight, getName
• Conven,on:	“get”	for	“geTer”	methods	

Ø Mutator	methods	
• feed:	adds	weight,	height	
• setName

Discussion: data types 
for state variables? 
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Instance	Variables:	Chicken.java
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public class Chicken {

   // --------- INSTANCE VARIABLES ---------------
private String name; 
private int height; // in cm
private double weight; // in lbs

All instance variables are private	

Constructor:	Chicken.java
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public class Chicken {

   // --------- INSTANCE VARIABLES ---------------
private String name; 
private int height; // in cm
private double weight;

// --------- CONSTRUCTORS ---------------
public Chicken(String name, int h,

double weight) {
this.name = name;
this.height = h;
this.weight = weight;

}
…

Observations?
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Constructor:	Chicken.java
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public class Chicken {

   // --------- INSTANCE VARIABLES ---------------
private String name; 
private int height; // in cm
private double weight;

// --------- CONSTRUCTORS ---------------
public Chicken(String name, int h,

double weight) {
this.name = name;
this.height = h;
this.weight = weight;

}
… this: Special name for the constructed object, �

like self in Python (differentiate from parameters)

Type and name for 
each parameterConstructor name same as class’s name

Params don’t need to be same 
names as instance var names
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Example:	Chicken class	
• State	

Ø Name,	weight,	height	
• Behavior		

Ø Accessor	methods	
• getWeight, getHeight, getName
•  Conven,on:	“get”	for	“geTer”	methods	

Ø Mutator	methods	
• feed:	adds	weight,	height		
• setName Discussion: What are the 

methods’ input (parameters) �
and output (what is returned)? 
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Methods:	Chicken.java
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   …

// --------- Getter Methods ---------------
public String getName() {

return name;
}

// --------- Mutator Methods ---------------
public void feed() {

weight += .2;
height += 1;

}
…

}

Note that you don’t have to use this 
when variables are unambiguous

Chicken object’s 
instance variables

Type the method returns
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Construc,ng	objects
• Given	the	Chicken constructor	

Chicken( String name, int height, double 
weight )	

create	three	chickens	
Ø “Fred”,	weight:	2.0,	height:	38	
Ø “Sallie	Mae”,	weight:	3.0,	height:	45	
Ø “Momma”,	weight:	6.0,	height:	83	
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Object	References	
• Variable	of	type	object:	value	is	memory	loca,on	

one =		

two =		

Chicken	

weight	=	

height	=	

name	=	

2.0	

38	

“Fred”	

Chicken	

weight	=	

height	=	

name	=	

3.0	

45	

“Sallie	Mae”	

Memory 
Location

Sept	16,	2016	 Sprenkle	-	CSCI209	 24	

Object	References	
• Variable	of	type	object:	value	is	memory	loca,on	

one = 

two = 

If I haven’t called the constructor, only 
declared the variables: 
	

 Chicken one;
Chicken two;

	
Both	one and	two	are equal to null

This is the case for objects.  Primitive types are not null. 
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Null	Object	Variables	
• An	object	variable	can	be	explicitly	set	to	null	

Ø Means	that	the	object	variable	does	not	currently	
refer	to	any	object	

• Can	test	if	an	object	variable	is	set	to	null	

Chicken chick = null;
   … … … 
if (chick == null) { 

. . . 
}
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Mul,ple	Object	Variables	
• More	than	one	object	variable	can	refer	to	the	
same	object	

Chicken	

weight	=	

height	=	

name	=	

3.0	

45	

“Sallie	Mae”	

sal	=		

sal2	=		

Chicken sal = new Chicken(“Sallie Mae”);
Chicken sal2 = sal;
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More	on	Constructors	
• A	class	can	have	more	than	one	constructor	

Ø Whoa!		Let	that	sink	in	for	a	bit	

• A	constructor	can	have	zero,	one,	or	mul,ple	
parameters	

• A	constructor	has	no	return	value	
• A	constructor	is	always	called	with	the	new	
operator	

Example	of	Overloaded	Constructors	
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Constructor	Overloading	
• Allowing	>	1	constructor	(or	any	method)	with	
the	same	name	is	called	overloading	
Ø Constraint:	Each	of	the	methods	that	have	the	same	
name	must	have	different	parameters	so	that	
compiler	can	dis,nguish	between	them	
• “different” à	Number	and/or	type	

• Compiler	handles	overload	resolu/on	
Ø Process	of	matching	a	method	call	to	the	correct	
method	by	matching	the	parameters	

• No	func,on	overloading	in	Python	

29	overload.py
Why isn’t overloading possible in Python?

Default	Ini,aliza,on	
• If	instance	field	is	not	explicitly	set	in	constructor,	
automa,cally	set	to	default	value	
Ø Numbers	set	to	zero	
Ø Booleans	set	to	false	
Ø Object	variables	set	to	null
Ø Local	variables	are	not	assigned	defaults	

• Do	not	rely	on	defaults	
Ø Code	is	harder	to	understand	
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Clean Code Recommendation:
Set all instance fields in the constructor(s)
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Explicit	Field	Ini,aliza,on	
• If	more	than	one	constructor	needs	an	instance	
field	set	to	same	value,	the	field	can	be	set	
explicitly	in	the	field	declara,on	

class Chicken {
private String name = "";
. . .

}

Set value here for 
all constructors
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Explicit	Field	Ini,aliza,on	
• Or	in	a	sta,c	method	call	

class Employee {
private int id = assignID();
. . .
private static int assignID() {

int r = nextID;
nextID++;
return r;

}
}

More on static later…
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Explicit	Field	Ini,aliza,on	
• Explicit	field	ini,aliza,on	happens	before	any	
constructor	runs	

• A	constructor	can	change	an	instance	field	that	
was	set	explicitly		

• If	the	constructor	does	not	set	the	field	explicitly,	
explicit	field	ini,aliza,on	is	used	
class Chicken {

private String name = "";
public Chicken( String name, … ) {

this.name = name;
…

}
…

Change explicit 
field initialization


