
Objec&ves	
• Inheritance	
• Polymorphism	

Ø Dispatch	

Sept	23,	2016	 Sprenkle	-	CSCI209	 1	

Sept	23,	2016	 Sprenkle	-	CSCI209	 2	

Inheritance	
• Build	new	classes	based	on	exis&ng	classes	

Ø Allows	code	reuse	
• Start	with	a	class	(parent	or	super	class)	
• Create	another	class	that	extends	or	specializes	
the	class	
Ø Called	the	child,	subclass	or	derived	class	
Ø Use	extends keyword	to	make	a	subclass	

Examples?

Sept	23,	2016	 Sprenkle	-	CSCI209	 3	

Child	class	
• Inherits	all	of	parent	class’s	methods	and	fields	

Ø Note	on	private	fields:	all	are	inherited,	just	can’t	
access	

• Can	also	override	methods	
Ø Use	the	same	name	and	parameters,	but	implementa&on	
is	different	

• Adds	methods	or	fields	for	addi/onal	func/onality	
• Use	super	object	to	call	parent’s	method	

Ø Even	if	child	class	redefines	parent	class’s	method	

Sept	23,	2016	 Sprenkle	-	CSCI209	 4	

Inheritance	Rules	
• Constructors	are	not	inherited	

Ø For	example:	we	will	have	to	define		
Rooster(String name, int height,
double weight)  
even	though	similar	constructor	in	Chicken

Sept	23,	2016	 Sprenkle	-	CSCI209	 5	

Rooster class	
• Could	write	class	from	scratch,	but	…	
• A	rooster	is	a	chicken	

Ø But	it	adds	something	to	(or	specializes)	what	a	
chicken	is/does		

• Classic	mark	of	inheritance:	is	a	rela&onship	
• Rooster	is	child	class	
• Chicken	is	parent	class	

Sept	23,	2016	 Sprenkle	-	CSCI209	 6	

Access	Modifiers	
• public

Ø Any	class	can	access	
• private

Ø No	other	class	can	access	(including	child	classes)	
• Must	use	parent	class’s	public	accessor/mutator	
methods	

• protected
Ø Child	classes	can	access	
Ø Members	of	package	can	access	
Ø Other	classes	cannot	access	

Access	Modes	

Accessible	to	 Member	Visibility	
public protected package private

Defining	class	 Yes	 Yes	 Yes	 Yes	
Class	in	same	
package	

Yes	 Yes	 Yes	 No	

Subclass	in	
different	package	

Yes	 Yes	 No	 No	

Non-subclass	
different	package	

Yes	 No	 No	 No	

Sept	23,	2016	 Sprenkle	-	CSCI209	 7	

Default (if none specified)

protected
• Accessible	to	subclasses	and	members	of	package	
• Can’t	keep	encapsula&on	“pure”	

Ø Don’t	want	others	to	access	fields	directly	
Ø May	break	code	if	you	change	your	implementa&on	

• Assump&on?	
Ø Someone	extending	your	class	with	protected	access	
knows	what	they	are	doing		

Sept	23,	2016	 Sprenkle	-	CSCI209	 8	

Sept	23,	2016	 Sprenkle	-	CSCI209	 9	

Access	Modifiers	
• If	you're	uncertain	which	to	use	(protected,	
package,	or	private),	use	the	most	restric/ve	
Ø Changing	to	less	restric&ve	later	à	easy	
Ø Changing	to	more	restric&ve	à	may	break	code	that	
uses	your	classes	

Sept	23,	2016	 Sprenkle	-	CSCI209	 10	

Rooster class	
public class Rooster extends Chicken {

public Rooster(String name,
int height, double weight) {
// all instance fields inherited
// from super class
this.name = name;
this.height = height;
this.weight = weight;
is_female = false;

}

// new functionality
public void crow() {… }
…

By default calls default
super constructor with

no parameters

extends means that Rooster
is a child of Chicken

(not one of the examples
posted online)

Sept	23,	2016	 Sprenkle	-	CSCI209	 11	

Rooster class	
public class Rooster extends Chicken {

public Rooster(String name,
int height, double weight) {

super(name, height, weight, false);
}

// new functionality
public void crow() { … }

…
}

Call to super constructor must be first line in constructor

Sept	23,	2016	 Sprenkle	-	CSCI209	 12	

Constructor	Chaining	
• Constructor	automa-cally	calls	constructor	of	
parent	class	if	not	done	explicitly	
Ø super();

• What	if	parent	class	does	not	have	a	constructor	
with	no	parameters?	
Ø Compila&on	error	
Ø Forces	child	classes	to	call	a	constructor	with	
parameters	

Sept	23,	2016	 Sprenkle	-	CSCI209	 13	

Overriding	and	New	Methods	
public class Rooster extends Chicken {

…

// overrides superclass; greater gains
@Override
public void feed() {

weight += .5;
height += 2;

}

// new functionality
public void crow() {

System.out.println("Cocka-Doodle-Doo!");
}

}

Same method signature
as parent class

Specializes the class

Sept	23,	2016	 Sprenkle	-	CSCI209	 14	

Inheritance	Tree	
• java.lang.Object

Ø Chicken
• Rooster
	

• Call	parent	class’s	constructor	first	
Ø Know	you	have	fields	of	parent	class	
before	implemen&ng	constructor	
for	your	class	

Object

Chicken

Rooster

1	

2	

Sept	23,	2016	 Sprenkle	-	CSCI209	 15	

Inheritance	Tree	
• java.lang.Object

Ø Chicken
• Rooster

• No	finalize()	chaining	
Ø Should	call	super.finalize() inside	of	
finalize	method	

Object

Chicken

Rooster

1	

2	

Sept	23,	2016	 Sprenkle	-	CSCI209	 16	

Shadowing	Parent	Class	Fields	
• Child	class	has	field	with	same	name	as	parent	
class	
Ø You	probably	shouldn’t	be	doing	this!	
Ø But	could	happen	

• Example:	more	precision	for	a	constant	

field // this class's field
this.field // this class's field
super.field // super class's field

Sept	23,	2016	 Sprenkle	-	CSCI209	 17	

Mul&ple	Inheritance	
• In	Python,	it	is	possible	for	a	class	to	inherit	(or	
extend)	more	than	one	parent	class	
Ø Child	class	has	the	fields	from	both	parent	classes		

• This	is	NOT	possible	in	Java.			
Ø A	class	may	extend	(or	inherit	from)	only	one	class	

POLYMORPHISM	&	DISPATCH	

Sept	23,	2016	 Sprenkle	-	CSCI209	 18	

Sept	23,	2016	 Sprenkle	-	CSCI209	 19	

Polymorphism	
• Polymorphism	is	the	ability	for	an	object	to	vary	
behavior	based	on	its	type	

• You	can	use	a	child	class	object	whenever	the	
program	expects	an	object	of	the	parent	class	

• Object	variables	are	polymorphic	
• A	Chicken object	variable	can	refer	to	an	object	
of	class	Chicken, Rooster, Hen,	or	any	class	
that	inherits	from	Chicken

	Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

We can guess the actual types
But compiler can’t

Sept	23,	2016	 Sprenkle	-	CSCI209	 20	

Compiler’s	Behavior	

• We	know	chickens[1]	is	probably	a	
Rooster,	but	to	compiler,	it’s	a	Chicken so		
chickens[1].crow(); will	not	compile	

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

Sept	23,	2016	 Sprenkle	-	CSCI209	 21	

Compiler’s	Behavior	
• When	we	refer	to	a	Rooster object	through	a	
Rooster	object	variable,		
compiler	sees	it	as	a	Rooster	object	

• If	we	refer	to	a	Rooster	object	through	a	
Chicken	object	variable,		
compiler	sees	it	as	a	Chicken	object.	

• We	cannot	assign	a	parent	class	object	to	a	derived	
class	object	variable	
Ø Ex:	Rooster	is	a	Chicken,	but	a	Chicken	is	not	
necessarily	a	Rooster

Rooster r = chicken;

à Object variable determines how compiler sees object.

Sept	23,	2016	 Sprenkle	-	CSCI209	 22	

Polymorphism	

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

chickens[1].feed();

Compiles	because	Chicken	has	a	feed	method.	
	
But,	which	feed	method	is	called	–		

	 	Chicken’s	or	Rooster’s?	

Sept	23,	2016	 Sprenkle	-	CSCI209	 23	

Dynamic	vs.	Sta&c	Dispatch	
• Dynamic	dispatch	is	not	necessarily	a	property	of	
object-oriented	programming	in	general	

• Some	OOP	languages	use	staCc	dispatch	
Ø Type	of	the	object	variable	used	to	call	the	method	
determines	which	version	gets	run	

• The	primary	difference	is	when	decision	on	which	
method	to	call	is	made…	
Ø Sta&c	dispatch	(C#)	decides	at	compile	&me	
Ø Dynamic	dispatch	(Java,	Python)	decides	at	run	&me	

• Dynamic	dispatch	is	slow	
Ø  In	mid	to	late	90s,	ac&ve	research	on	how	to	decrease	
&me	

Sept	23,	2016	 Sprenkle	-	CSCI209	 24	

Inheritance	Rules:	Access	Modifiers	

• Why?			
• What	would	happen	if	a	method	in	the	parent	
class	is	public but	the	child	class’s	method	is	
private?	

Access modifiers in child classes
• Can make access to child class less restrictive but

not more restrictive

