Objectives

Javadocs
Inheritance

» Final methods, fields
Abstract Classes
Interfaces

Sept 26, 2016 Sprenkle - CSCI209

JAVADOCS

“Documentation is a love letter that you write to
your future self”” — Damian Conway

Sept 26, 2016 Sprenkle - CSCI209




Javadocs

Special comments, which are used to generate
HTML documentation

Syntax:

/**
* Comment
*/

Put before a class, a method, or a field to
describe the respective class/method/field

Sept 26, 2016 Sprenkle - CSCI209 3

Javadoc

Can contain HTML syntax in description

Example block tags to describe your code
/;Ziﬂ@param <paramname> <description>

@return <description> (include special cases) m=—

startsWith

public boolean startsWith(String prefix)

Tests if this string starts with the specified prefix.

Parame! ters:
prefix - the prefix.
Returns:

true if the character sequence represented by the argument is a prefix of the character sequence represented by this

string; false otherwise. Note also that true will be returned if the argument is an empty string or is equal to this /l_/
String object as determined by the equals(Object) method.
4

Sept 26, 2016 Sprenkle - CSCI209




Examples

/**
* A simple Java class that models a Chicken. The

* state of the chicken is its name, height, and weight
*

* @author Sara Sprenkle
*/ Tags always go last in Javadoc comment

/**
* @return the height of the chicken, in centimeters
*/

/**
* @param n the String representing the name of the
chicken
*/
Expect these types of comments on all methods from now on
Sept 26, 2016 Sprenkle - CSCI209 5

Generating Javadocs
From command-line:

javadoc [options] [packagenames]
[sourcefiles] [@files]

Generates HTML files
» E.g., Game’s Javadocs

Sept 26, 2016 Sprenkle - CSCI209 6




Summary of Inheritance

)

Remove repetitive code by modeling the “is-a’
hierarchy

Move “common denominator” code up the
inheritance chain

Don’t use inheritance unless all inherited
methods make sense

Use polymorphism

Sept 26, 2016 Sprenkle - CSCI209

FINAL KEYWORD

Sept 26, 2016 Sprenkle - CSCI209




Preventing Inheritance

Sometimes, you do not want a class to derive from one
of your classes

A class that cannot be extended is known as a final
class

To make a class final, simply add the keyword final in
front of the class definition:

public final class Rooster extends Chicken {

}
Example of final class: System

Sept 26, 2016 Sprenkle - CSCI209 9

Final methods

Can make a method final

Any class derived from this class cannot override the
final methods

class Chicken {

r.Juk.)lic final String getName() { . . . }

}

By default, all methods ina final class are
final methods.

Why would we want to use final?
What are possible benefits to us, the compiler, ...?

Sept 26, 2016




ABSTRACT CLASSES

Sept 26, 2016 Sprenkle - CSCI209

11

Abstract Classes

Some methods defined, others not defined
Partial implementation

Classes in which not all methods are
implemented are abstract classes

public abstract class ZooAnimal

Blank methods are labeled as abstract

public abstract void
exercise(Environment env);

Sept 26, 2016 Sprenkle - CSCI209

12




Abstract Classes

An abstract class cannot be instantiated
i.e., can’t create an object of that class
But can have a constructor!

Child class of an abstract class can only be
instantiated if it overrides and implements every
abstract method of parent class

If child class does not override all abstract methods,
it is also abstract

Sept 26, 2016 Sprenkle - CSCI209 13

Abstract Classes

static, private, and final methods
cannot be abstract
B/c cannot be overridden by a child class

final class cannot contain abstract methods
Why?
A class can be abstract even if it has no abstract

methods

Use when implementation is incomplete and is
meant to serve as a parent class for class(es) that
complete the implementation

Can have array of objects of abstract class
JVM will do dynamic dispatch for methods

Sept 26, 2016 Sprenkle - CSCI209 14




Examples of abstract classes

Example 1:
» java.net.Socket
> java.net.SSLSocket (abstract)

Example 2:
»java.util.Calendar (abstract)
» java.util.GregorianCalendar

Sept 26, 2016 Sprenkle - CSCI209 15

Summary: Defining Abstract Classes

Define a class as abstract when have partial
implementation

Sept 26, 2016 Sprenkle - CSCI209 16




INTERFACES

Sept 26, 2016 Sprenkle - CSCI209 17

Interfaces

Pure specification, no implementation
A set of requirements for classes to conform to

Classes can implement one or more interfaces

Sept 26, 2016 Sprenkle - CSCI209 18




Example of an Interface

We can call Arrays.sort(array)

Arrays.sort sorts arrays of any object class that
implements the Comparable interface

Classes that implement Comparable must
provide a way to decide if one object is less than,
greater than, or equal to another object

Sept 26, 2016 Sprenkle - CSCI209 19

java. lang.Comparable

public interface Comparable {
int compareTo(Object other);
¥

Any object that is (inherits) Comparable must
have a method named compareTo()

Returns:

Return a negative integer if the this object is less than the
object passed as a parameter

Return a positive integer if the this object is greater than
the object passed as a parameter

Return a 0 if the two objects are equal

Sept 26, 2016 Sprenkle - CSCI209 20




Comparable Interface API/Javadoc

Specifies what the compareTo() method should
do

Says which Java library classes implement
Comparable

http://docs.oracle.com/javase/8/docs/api/java/lang/
Comparable.html

Sept 26, 2016 Sprenkle - CSCI209 21

Implementing an Interface

In the class definition, specify that the class will
implement the specific interface

public class Chicken implements Comparable

Provide a definition for all methods specified in
interface

How to determine Chicken order?

Sept 26, 2016 Sprenkle - CSCI209 22




Comparable Chickens
One way: order by height

public class Chicken implements Comparable {

public int compareTo(Object otherObject) {
Chicken other = (Chicken)otherObject;
if Cheight < other.getHeight() )
return -1;
if (height > other.getHeight())
return 1;
return 0;
// simpler: return height-other.getHeight()
}
ks

What if otherObject is not a Chicken?

Sept 26, 2016 Sprenkle - CSCI209 23

Interface Summary

Contain only object (not class) methods
All methods are public
Implied if not explicit

Fields are constants that are static and
final

A class can implement multiple interfaces
Separated by commas in definition

Sept 26, 2016 Sprenkle - CSCI209 24




Testing for Interfaces

Use the 1nstanceof operator to see if an
object implements an interface

e.g., to determine if an object can be compared to
another object using the Comparable interface

if (obj instanceof Comparable) {
// runs if obj is an object variable of a class
// that implements the Comparable interface

else {
// runs if it does not implement the interface
Sept 26, 2016 Sprenkle - CSCI209 25

Interface Object Variables

Can use an object variable to refer to an object of any
class that implements an interface

Using this object variable, can only access the interface’s
methods

For example...

public void aMethod(Object o) {

{F (obj instanceof Comparable) {
Comparable comp = (Comparable) obj;
boolean res = comp.compareTo(obj2);

}

ks

Sept 26, 2016 Sprenkle - CSCI209 26




Interface Definitions

public interface Comparable {
int compareTo(Object other);
ks

Interface methods are public by default
Do not need to specify methods as public

Sept 26, 2016 Sprenkle - CSCI209 27

Interface Definitions and Inheritance

Can extend interfaces

Allows a chain of interfaces that go from general to
more specific

For example, define an interface for an object
that is capable of moving:

public interface Movable {
void move(double x, double y);
ks

Sept 26, 2016 Sprenkle - CSCI209 28




Interface Definitions and Inheritance

A powered vehicle is also Movable

Must also have amilesPerGallon() method,
which will return its gas mileage

public interface Powered extends Movable {
double milesPerGallon();
ks

Sept 26, 2016 Sprenkle - CSCI209 29

Constants in an Interface

If a variable is specified in an interface, it is
automatically a constant:

public static final variable
public interface Powered extends Movable {

double milesPerGallon();
double SPEED_LIMIT = 95;

}

An object that implements Powered
interface has a constant SPEED_LIMIT
defined

Sept 26, 2016 Sprenkle - CSCI209 30




Interface Definitions and Inheritance

Powered interface extends Movab'le interface
An object that implements Powered interface
must satisfy all requirements of that interface as
well as the parent interface.

A Powered object must have a
milesPerGallon() and move() method

Sept 26, 2016 Sprenkle - CSCI209 31

Multiple Interfaces

A class can implement multiple interfaces
Must fulfill the requirements of each interface

public final class String implements
Serializable, Comparable, CharSequence { ..

But NOT possible with inheritance
A class can only extend (or inherit from) one class

Sept 26, 2016 Sprenkle - CSCI209 32




Benefits of Interfaces

?7?

Sept 26, 2016 Sprenkle - CSCI209

33

Using an Interface or Abstract Class

When should we use
an interface or an abstract class?

Sept 26, 2016 Sprenkle - CSCI209

34




Abstract Classes and Interfaces

Important structures in Java
Make code easier to change

Will return to/apply these ideas throughout the
course

Concepts are used in many languages besides
Java

Sept 26, 2016 Sprenkle - CSCI209 35




