
9/23/16	

1	

Objec-ves	
• Javadocs	
• Inheritance	

Ø Final	methods,	fields	

• Abstract	Classes	
• Interfaces	

Sept	26,	2016	 Sprenkle	-	CSCI209	 1	

JAVADOCS	

Sept	26,	2016	 Sprenkle	-	CSCI209	 2	

“Documentation is a love letter that you write to
your future self.” – Damian Conway

9/23/16	

2	

Javadocs	
• Special	comments,	which	are	used	to	generate	
HTML	documenta-on	

• Syntax:		

• Put	before	a	class,	a	method,	or	a	field	to	
describe	the	respec-ve	class/method/field	

Sept	26,	2016	 Sprenkle	-	CSCI209	 3	

/**
 * Comment
 */	

Javadoc	
• Can	contain	HTML	syntax	in	descrip-on	
• Example	block	tags	to	describe	your	code	

Sept	26,	2016	 Sprenkle	-	CSCI209	 4	

@param <paramname> <description>
@return <description> (include	special	cases)	

9/23/16	

3	

Examples	

Sept	26,	2016	 Sprenkle	-	CSCI209	 5	

/**
 * A simple Java class that models a Chicken. The
 * state of the chicken is its name, height, and weight
 *
 * @author Sara Sprenkle
 */	

/**
 * @return the height of the chicken, in centimeters
 */	

/**
 * @param n the String representing the name of the
chicken
 */	

Expect these types of comments on all methods from now on

Tags always go last in Javadoc comment

Genera-ng	Javadocs	
• From	command-line:	

javadoc [options] [packagenames]
[sourcefiles] [@files]

• Generates	HTML	files	
Ø E.g.,	Game’s	Javadocs	

Sept	26,	2016	 Sprenkle	-	CSCI209	 6	

9/23/16	

4	

Sept	26,	2016	 Sprenkle	-	CSCI209	 7	

Summary	of	Inheritance	
• Remove	repe--ve	code	by	modeling	the	“is-a”	
hierarchy	
Ø Move	“common	denominator”	code	up	the	
inheritance	chain	

• Don’t	use	inheritance	unless	all	inherited	
methods	make	sense	

• Use	polymorphism	

FINAL	KEYWORD	

Sept	26,	2016	 Sprenkle	-	CSCI209	 8	

9/23/16	

5	

Sept	26,	2016	 Sprenkle	-	CSCI209	 9	

Preven-ng	Inheritance	
• Some-mes,	you	do	not	want	a	class	to	derive	from	one	
of	your	classes	

• A	class	that	cannot	be	extended	is	known	as	a	final
class	

• To	make	a	class	final,	simply	add	the	keyword	final in	
front	of	the	class	defini-on:	

	
		
• Example	of	final class:	System
	

public final class Rooster extends Chicken {
. . .

}

Sept	26,	2016	 Sprenkle	-	CSCI209	 10	

Final	methods	
• Can	make	a	method	final

Ø Any	class	derived	from	this	class	cannot	override	the	
final methods	

• By	default,	all	methods	in	a	final class	are	
final methods.	

class Chicken {
. . .
public final String getName() { . . . }
. . .

}

Why would we want to use final?
What are possible benefits to us, the compiler, …?

9/23/16	

6	

ABSTRACT	CLASSES	

Sept	26,	2016	 Sprenkle	-	CSCI209	 11	

Sept	26,	2016	 Sprenkle	-	CSCI209	 12	

Abstract	Classes	
• Some	methods	defined,	others	not	defined	

Ø Par-al	implementa-on	

• Classes	in	which	not	all	methods	are	
implemented	are	abstract classes
Ø public abstract class ZooAnimal

• Blank	methods	are	labeled	as	abstract
Ø public abstract void
exercise(Environment env);

9/23/16	

7	

Sept	26,	2016	 Sprenkle	-	CSCI209	 13	

Abstract	Classes	
• An	abstract	class	cannot	be	instan-ated	

Ø i.e.,	can’t	create	an	object	of	that	class	
Ø But	can	have	a	constructor!	

• Child	class	of	an	abstract	class	can	only	be	
instan-ated	if	it	overrides	and	implements	every	
abstract	method	of	parent	class	
Ø If	child	class	does	not	override	all	abstract	methods,	
it	is	also	abstract	

Sept	26,	2016	 Sprenkle	-	CSCI209	 14	

Abstract	Classes	
• static,	private,	and	final	methods	
cannot	be	abstract
Ø B/c	cannot	be	overridden	by	a	child	class	

• final class	cannot	contain	abstract	methods	

• A	class	can	be	abstract	even	if	it	has	no	abstract	
methods	
Ø Use	when	implementa-on	is	incomplete	and	is	
meant	to	serve	as	a	parent	class	for	class(es)	that	
complete	the	implementa-on	

• Can	have	array	of	objects	of	abstract	class	
Ø JVM	will	do	dynamic	dispatch	for	methods	

Why?	

9/23/16	

8	

Sept	26,	2016	 Sprenkle	-	CSCI209	 15	

Examples	of	abstract	classes	
• Example	1:	

Ø java.net.Socket
Ø java.net.SSLSocket (abstract)	

• Example	2:	
Ø java.util.Calendar (abstract)	
Ø java.util.GregorianCalendar

Sept	26,	2016	 Sprenkle	-	CSCI209	 16	

Summary:	Defining	Abstract	Classes	
➨ Define	a	class	as	abstract	when	have	par%al	
implementa%on	

9/23/16	

9	

INTERFACES	

Sept	26,	2016	 Sprenkle	-	CSCI209	 17	

Sept	26,	2016	 Sprenkle	-	CSCI209	 18	

Interfaces	
• Pure	specifica-on,	no	implementa-on	

Ø A	set	of	requirements	for	classes	to	conform	to	

	
• Classes	can	implement	one	or	more	interfaces	

9/23/16	

10	

Sept	26,	2016	 Sprenkle	-	CSCI209	 19	

Example	of	an	Interface	
• We	can	call	Arrays.sort(array)

• Arrays.sort	sorts	arrays	of	any	object	class	that	
implements	the	Comparable interface	

• Classes	that	implement	Comparable must	
provide	a	way	to	decide	if	one	object	is	less	than,	
greater	than,	or	equal	to	another	object	

Sept	26,	2016	 Sprenkle	-	CSCI209	 20	

java.lang.Comparable

• Any	object	that	is	(inherits)	Comparable must	
have	a	method	named	compareTo()	

• Returns:	
Ø Return	a	nega-ve	integer	if	the	this	object	is	less	than	the	
object	passed	as	a	parameter	

Ø Return	a	posi-ve	integer	if	the	this	object	is	greater	than	
the	object	passed	as	a	parameter		

Ø Return	a	0	if	the	two	objects	are	equal	

public interface Comparable {
int compareTo(Object other);

}

9/23/16	

11	

Sept	26,	2016	 Sprenkle	-	CSCI209	 21	

Comparable	Interface	API/Javadoc	
• Specifies	what	the	compareTo()	method	should	
do	

• Says	which	Java	library	classes	implement	
Comparable

http://docs.oracle.com/javase/8/docs/api/java/lang/
Comparable.html

Sept	26,	2016	 Sprenkle	-	CSCI209	 22	

Implemen-ng	an	Interface	
• In	the	class	defini-on,	specify	that	the	class	will	
implement the	specific	interface	

	
• Provide	a	defini-on	for	all	methods	specified	in	
interface	

public class Chicken implements Comparable

How to determine Chicken order?

9/23/16	

12	

Sept	26,	2016	 Sprenkle	-	CSCI209	 23	

Comparable Chickens	
 One	way:	order	by	height		

What if otherObject is not a Chicken?

public class Chicken implements Comparable {
 . . .
 public int compareTo(Object otherObject) {
 Chicken other = (Chicken)otherObject;
 if (height < other.getHeight())

return –1;
if (height > other.getHeight())

return 1;
return 0;
// simpler: return height-other.getHeight()

 }
}

Sept	26,	2016	 Sprenkle	-	CSCI209	 24	

Interface	Summary	
• Contain	only	object	(not	class)	methods	
• All	methods	are	public

Ø Implied	if	not	explicit	

• Fields	are	constants	that	are	static	and	
final

• A	class	can	implement	mul-ple	interfaces	
Ø Separated	by	commas	in	defini-on	

9/23/16	

13	

Sept	26,	2016	 Sprenkle	-	CSCI209	 25	

Tes-ng	for	Interfaces	

• Use	the	instanceof operator	to	see	if	an	
object	implements	an	interface	
Ø e.g.,	to	determine	if	an	object	can	be	compared	to	
another	object	using	the	Comparable	interface	

if (obj instanceof Comparable) {
// runs if obj is an object variable of a class
// that implements the Comparable interface

}
else {

// runs if it does not implement the interface
}

Sept	26,	2016	 Sprenkle	-	CSCI209	 26	

Interface	Object	Variables	
• Can	use	an	object	variable	to	refer	to	an	object	of	any	
class	that	implements	an	interface	

• Using	this	object	variable,	can	only	access	the	interface’s	
methods	

• For	example…	

public void aMethod(Object o) {
…
if (obj instanceof Comparable) {

 Comparable comp = (Comparable) obj;
 boolean res = comp.compareTo(obj2);

}
}

9/23/16	

14	

Sept	26,	2016	 Sprenkle	-	CSCI209	 27	

Interface	Defini-ons	

• Interface	methods	are	public by	default	
Ø 	Do	not	need	to	specify	methods	as	public
	

public interface Comparable {
int compareTo(Object other);

}

Sept	26,	2016	 Sprenkle	-	CSCI209	 28	

Interface	Defini-ons	and	Inheritance	
• Can	extend	interfaces	

Ø Allows	a	chain	of	interfaces	that	go	from	general	to	
more	specific	

• For	example,	define	an	interface	for	an	object	
that	is	capable	of	moving:	

public interface Movable {
void move(double x, double y);

}

9/23/16	

15	

Sept	26,	2016	 Sprenkle	-	CSCI209	 29	

Interface	Defini-ons	and	Inheritance	
• A	powered	vehicle	is	also	Movable

Ø Must	also	have	a	milesPerGallon() method,	
which	will	return	its	gas	mileage	

public interface Powered extends Movable {
double milesPerGallon();

}

Sept	26,	2016	 Sprenkle	-	CSCI209	 30	

Constants	in	an	Interface	
• If	a	variable	is	specified	in	an	interface,	it	is	
automa-cally	a	constant:	
Ø public static final variable

• An	object	that	implements	Powered	
interface	has	a	constant	SPEED_LIMIT	
defined	

public interface Powered extends Movable {
double milesPerGallon();
double SPEED_LIMIT = 95;

}

9/23/16	

16	

Sept	26,	2016	 Sprenkle	-	CSCI209	 31	

Interface	Defini-ons	and	Inheritance	
• Powered	interface	extends	Movable	interface	
• An	object	that	implements	Powered	interface	
must	sa-sfy	all	requirements	of	that	interface	as	
well	as	the	parent	interface.	
Ø A	Powered	object	must	have	a	
milesPerGallon()	and	move() method	

Sept	26,	2016	 Sprenkle	-	CSCI209	 32	

Mul-ple	Interfaces	
• A	class	can	implement	mul-ple	interfaces	

Ø Must	fulfill	the	requirements	of	each	interface	

• But	NOT	possible	with	inheritance	
Ø A	class	can	only	extend	(or	inherit	from)	one	class	

public final class String implements
Serializable, Comparable, CharSequence { …

9/23/16	

17	

Sept	26,	2016	 Sprenkle	-	CSCI209	 33	

Benefits	of	Interfaces	
• ??

Using	an	Interface	or	Abstract	Class	

Sept	26,	2016	 Sprenkle	-	CSCI209	 34	

When should we use
an interface or an abstract class?

9/23/16	

18	

Abstract	Classes	and	Interfaces	
• Important	structures	in	Java	

Ø Make	code	easier	to	change	

• Will	return	to/apply	these	ideas	throughout	the	
course	

• Concepts	are	used	in	many	languages	besides	
Java	

Sept	26,	2016	 Sprenkle	-	CSCI209	 35	

