Objectives

Packages
Collections
Generics

Sept 28, 2016

Sprenkle - CSCI209

PACKAGES

Sept 28, 2016 Sprenkle - CSCI209

Packages

Hierarchical structure of Java classes
Directories of directories
java
— Lang
— Object
—String

— net Fully qualified name: java. lang.String

— util
L Date

Use 1mport to access packages

Sept 28, 2016 Sprenkle - CSCI209 3

Standard Practice

To reduce chance of a conflict between names of
classes, put classes in packages

Use package keyword to say that a class
belongs to a package:

package java.util;

First line in class file
Typically, use a unique prefix, similar to domain
names

com.1bm

edu.wlu.cs.logic

Sept 28, 2016 Sprenkle - CSCI209 4

Importing Packages

Can import one class at a time or all the classes
within a package

Examples:

import java.util.Date;

LMPOrt JAVA.10.™; e |mport entire package

* form may increase compile time
BUT, no effect on run-time performance

Sept 28, 2016 Sprenkle - CSCI209 5

COLLECTIONS

Sept 28, 2016 Sprenkle - CSCI209

Collections

Sometimes called containers
Group multiple elements into a single unit

Store, retrieve, manipulate, and communicate

aggregate data

Represent data items that form a natural group
Poker hand (a collection of cards)

Mail folder (a collection of messages)

Telephone directory (a mapping of names to phone
numbers)

Sept 28, 2016 Sprenkle - CSCI209

Java Collections Framework

Unified architecture for representing and
manipulating collections

More than arrays
More flexible, functionality, dynamic sizing

java.util

Sept 28, 2016 Sprenkle - CSCI209

Collections Framework

Interfaces
» Abstract data types that represent collections

» Collections can be manipulated independently of
implementation

Implementations
» Concrete implementations of collection interfaces
> Reusable data structures

Algorithms

» Methods that perform useful computations on
collections, e.g., searching and sorting

» Reusable functionality

» Polymorphic: same method can be used on many
different implementations of collection interface

Sept 28, 2016 Sprenkle - CSCI209

Core Collection Interfaces

Encapsulate different types of collections

Collection 1 Map
W -

ot | | | ‘
| Set List | Queue ‘ Deque ‘ SortedMap

| N,

SortedSet

Sept 28, 2016 Sprenkle - CSCI209

GENERICS

Sept 28, 2016

Sprenkle - CSCI209

11

Generic Collection Interfaces

Added to Java in version 1.5

Declaration of the Col Lection interface: Type

public 1nterface Collection<E>«=— parameter

<E> means interface is generic for element class
When declare a Collection, specify type of
object it contains

Make sure put in, get out appropriate type

Allows compiler to verify that object’s type is correct
Reduces errors at runtime

Example, a hand of cards: Always declare type
List<Card> hand = new ArraylList<Card>();

New in java 7: List<Card> hand = new ArraylList<>Q);

Sept 28, 2016

Comparable Interface

Also uses Generics

public 1nterface Comparableﬁg>

The type it compares

int compareTo(T o)

Sept 28, 2016 Sprenkle - CSCI209

13

Types Allowed with Generics

Can only contain Objects, not primitive types

Autoboxing and Autounboxing to the rescue!
Example: If collecting 1nts, use Integer

Sept 28, 2016 Sprenkle - CSCI209 14

WRAPPER CLASSES

Sept 28, 2016 Sprenkle - CSCI209

15

Wrapper Classes

Wrapper class for each primitive type

Sometimes need an instance of an Object
To store in Lists and other Collections

Include functionality of parsing their respective
data types

int x = 10;
Integer y = new Integer(10);

Sept 28, 2016 Sprenkle - CSCI209 16

Wrapper Classes

Autoboxing — automatically create a wrapper object

// implicitly 11 converted to
// new Integer(1l);
Integer y = 11;

Autounboxing — automatically extract a primitive

type

Integer x = new Integer(11);
int y = x.1ntValue(Q);
int z = x; // implicitly, x is x.intValue(Q);

Convert right side to whatever is needed on the left

Sept 28, 2016 Sprenkle - CSCI209 17

LISTS

Sept 28, 2016

Sprenkle - CSCI209

18

List

An ordered collection of elements
Can contain duplicate elements

Has control over where objects are stored in the
list

Sept 28, 2016 Sprenkle - CSCI209 19

L1st Interface
boolean add(<E> 0)

Boolean so that List can refuse some elements
e.g., refuse adding null elements

<E> get(int 1ndex)
Returns element at the position index
Different from Python: no shorthand

Can’t write 1iSTFpes]
int size()
Returns the number of elements in the list

And more!
contains, remove, toArray, ...

Sept 28, 2016 Sprenkle - CSCI209 20

Common L1st Implementations

ArraylList LinkedL1ist
» Resizable array » Use if adding elements to
> Used most frequently ends of list
> Fast » Use if often delete from
middle of list

» Implements Deque and
other methods so that it
can be used as a stack or

queue

How would you find the other implementations of L1st?

Sept 28, 2016 Sprenkle - CSCI209 21

Implementation vs. Interface

Implementation choice only affects performance

Preferred Style:
Choose an implementation

Assign collection to variable of corresponding
interface type

Interface variable = new Implementation();

Methods should accept interfaces—not
implementations

Why is this the preferred style?

Sept 28, 2016 Sprenkle - CSCI209 22

SETS

Sept 28, 2016

Sprenkle - CSCI209

23

Set Interface

No duplicate elements

Needs to determine if two elements are “logically”
the same (equals method)

Models mathematical set abstraction

Sept 28, 2016 Sprenkle - CSCI209

24

Set Interface

boolean add(<E> o)
Add to set, only if not already present

int size()
Returns the number of elements in the list

And more! (contains, remove,
toArray, ..)

Note: no get method -- get #3 from the set?

Sept 28, 2016 Sprenkle - CSCI209 25

Some Set Implementations

HashSet ‘422;3

» Implements set using hash
table

add, remove, and
contains each execute in
O(1) time

» Used more frequently
> Faster than TreeSet
» No ordering

TreeSet

» Implements set using a
tree

add, remove, and
contains each execute in
O(log n) time

» Sorts

Sept 28, 2016 Sprenkle - CSCI209 26

