Objectives

Collections

» Maps
Traversing Collections
Exception handling

Sept 30, 2016 Sprenkle - CSCI209

Review: Collections Framework

Interfaces
» Abstract data types that represent collections
» Collections can be manipulated independently of
implementation
Implementations
» Concrete implementations of collection interfaces
» Reusable data structures
Algorithms

» Methods that perform useful computations on
collections, e.g., searching and sorting

» Reusable functionality
» Polymorphic: same method can be used on many
different implementations of collection interface

Sept 30, 2016 Sprenkle - CSCI209

Review: Core Collection Interfaces

“ Encapsulate different types of collections

Sept 30, 2016 Sprenkle - CSCI209 3

MAPS

Sept 30, 2016 Sprenkle - CSCI209 4

Maps

Maps keys (of type <K>) to values (of type
<V>)

No duplicate keys
Each key maps to at most one value

Sept 30, 2016 Sprenkle - CSCI209

Map Interface

<V> put(<K> key, <V> value)
Returns old value that key mapped to

<V> get(Object key)
Returns value at that key (or null if no
mapping)

Set<K> keySet()

Returns the set of keys
And more ...
Sept 30, 2016 Sprenkle - CSCI209

A few Map Implementations

HashMap
Fast

TreeMap
Sorting
Key-ordered iteration

LinkedHashMap
Fast
Insertion-order iteration

Sept 30, 2016 Sprenkle - CSCI209

Declaring Maps

Declare types for both keys and values

class HashMap<K,V>
Map<String, Integer> map = new HashMap<>();

Keys are Strings
Values are Integers

Map<String, List<String>> map

\\ = new HashMap<>();
Keys are Strings

Values are Lists of Strings

Sept 30, 2016 Sprenkle - CSCI209

ALGORITHMS

Sept 30, 2016 Sprenkle - CSCI209 9

Collections Framework’s Algorithms

Polymorphic algorithms
Reusable functionality

Implemented in the Collections class
» Static methods, 15t argument is the collection

» Similar to Arrays class, which operates on arrays

Sept 30, 2016 Sprenkle - CSCI209 10

Overview of Available Algorithms

Sorting — optional Comparator
Sthﬂlng * Only Lists
Searching — binarySearch

Routine data manipulation: reverse*, copy*, fill*,
swap™, addAll

Composition — frequency, disjoint
Finding min, max

Sept 30, 2016 Sprenkle - CSCI209 11

TRAVERSING COLLECTIONS

Sept 30, 2016 Sprenkle - CSCI209 12

Two Ways to Iterate over Collections

For-each loop
Iterator

Sept 30, 2016 Sprenkle - CSCI209 13

Traversing Collections: For-each Loop

For-each IOOp: Or whatever data type is appropriate

for (Object o : collection)
System.out.println(o);

Valid for all Collections

Maps (and its implementations) are not
Collections

But, Map’s keySet() isa Set and values()isa
Collection

Sept 30, 2016 Sprenkle - CSCI209 14

Traversing Collections: Iterator

Iterator: Java Interface

Togetan Iterator fromaCollection
object:
Iterator<E> iterator()

Returns an Iterator overthe elements in this
collection

Example:

Iterator<String> iter = keys.iterator();

Sept 30, 2016 Sprenkle - CSCI209 15

Iterator: Like a Cursor

Always between two elements

Element(0) Element(1) Element(2) Element(3)

Index: 0 1 2

w
RS

Iterator<Integer> 1 = list.iterator();
while(i.hasNext()) {
int value = i.next();

Sept 30, 2016 Sprenkle - CSCI209 16

Iterator API
<E> next()

» Get the next element

boolean hasNext()

» Are there more elements?
void remove()

» Remove the previous element

» Only safe way to remove elements during iteration

Not known what will happen if remove elements in
for-each loop

Sept 30, 2016 Sprenkle - CSCI209 17

Polymorphic Filter Algorithm

static void filter(Collection c) {

Iterator 1 = c.iterator();

while(i.hasNext()) {
// if the next element does not
// adhere to the condition, remove it
if (! condition(i.next())) {

1.remove();

}

Polymorphic: works regardless of Collection implementation

Sept 30, 2016 Sprenkle - CSCI209 18

Traversing Lists: L1stIterator

Methods to traverse list backwards too
hasPrevious()
previous()
TogetalListIterator:

listIterator(int position)
Pass in S1ze() as position to get at end of list

Element(0) Element(1) Element(2) Element(3)

Index: 0 1 2 3 4

Sept 30, 2016 Sprenkle - CSCI209

19

Enumeration

Legacy class
Similar to Iterator

Example methods:
boolean hasMoreElements()
Object nextElement()

Longer method names
Doesn’t have remove operation

Sept 30, 2016 Sprenkle - CSCI209

20

How Not to lterate

Don’t use get to access List
If implementation isa LinkedL1ist,

performance is reeeeeally slow

for (int 1 = 0; 1 < list,sd ; 1++) {
count += list. T); // do something

Sept 30, 2016 Sprenkle - CSCI209 21

Synchronized Collection Classes

For multiple threads sharing same collection

Slow down typical programs
Avoid for now

e.g., Vector, Hashtable
See java.util.concurrent

Another example: StringBuffer is synchronized,
whereas StringBuilder is not

Sept 30, 2016 Sprenkle - CSCI209 22

Benefits of Collections Framework

Sept 30, 2016 Sprenkle - CSCI209 23
Sept 30, 2016 Sprenkle - CSCI209 24

Errors

Programs encounter errors when they run

» Users may enter data in the wrong form

» Files may not exist

» Program code has bugs!*
When an error occurs, a program should do one
of two things:

» Revert to a stable state and continue

» Allow the user to save data and then exit the
program gracefully

* (Of course, not your programs)
Sept 30, 2016 Sprenkle - CSCI209 25

Java Method Behavior

Normal/correct case: return specified return type

Error case: does not return anything, throws
an Exception
» An exception is an event that occurs during execution

of a program that disrupts normal flow of program's
instructions

» Exception: object that encapsulates error
information

Similar to Python

Sept 30, 2016 Sprenkle - CSCI209 26

Handling Exceptions

JVM’s exception-handling mechanism searches for an
exception handler—the error recovery code

» Exception handler deals with a particular exception
» Searches call stack for a method that can handle (or catch) the

exception

Method where | @

error occurred &-"

0

Method call >

~ Method without an |— (@)
S exception handler |<— a

- [¢]

7] Method call =S
= =+

© Method withan o
9 exception handler |<— ;_

Method call g
o

main — o)

2

Sept 30, 2016 Sprenkle - CSCI209 27
U D
Error Exception

All exceptions indirectly derive from Throwable
> Child classes: Error and Exception
Important Throwable methods
»getMessage()
Detailed message about error

»printStackTrace()

Prints out where problem occurred and path to reach
that point

»getStackTrace()

Get the stack in non-text format

Sept 30, 2016 Sprenkle - CSCI209 28

Printing Stack Trace Example

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

How helpful is this output?
How user friendly is it?

Sept 30, 2016 Sprenkle - CSCI209 29

Exception Classification: Error

An internal error

Strong convention: reserved for JVM

JVM-generated when resource exhaustion or an
internal problem

Example: Out of Memory error

When can that
happen in Java?

Program’s code should not and can not throw an
object of this type

Unchecked exception

Sept 30, 2016 Sprenkle - CSCI209 30

Exception Classification: Exception

RuntimeException: something that
happens because of a programming error
»Unchecked exception
»Examples: ArrayOutOfBoundsException,
NullPointerException,
ClassCastException
Checked exceptions

» A well-written application should anticipate and
recover from

Compiler enforces
»Examples: IOException, SQLException

Sept 30, 2016 Sprenkle - CSCI209 31

Exception Classification Part of java.lang
package
ﬂ

2 :
S Error Exception

Upfcheckec

RuntimeException

Others... /N
Checked:All non-

RuntimeExceptions SQLException

Checked

Sept 30, 2016 Sprenkle - CSCI209 32

Types of Exceptions

Unchecked Checked
Any exception that derives Any other exception
from Error or Programmer creates and
RuntimeException handles checked exceptions
Programmer does not Compiler-enforced checking
create/handle Improves reliability*
Try to make sure that they For conditions from which
don’t occur caller can reasonably be
Often indicates programmer expected to recover
error

E.g., precondition violations,
not using API correctly

Sept 30, 2016 Sprenkle - CSCI209 33

Types of Unchecked Exceptions

Derived from the class Error

Any line of code can generate because it is an
internal error

Don’t worry about what to do if this happens

Derived from the class RuntimeException
Indicates a bug in the program
Fix the bug

Examples: ArrayOutOfBoundsException,
NullPointerException,
ClassCastException

Sept 30, 2016 Sprenkle - CSCI209 34

Checked Exceptions

Need to be handled by your program
Compiler-enforced
Improves reliability*

For each method, tell the compiler:
What the method returns

What could possibly go wrong
Advertise the exceptions that a method throws

Helps users of your interface know what method does
and lets them decide how to handle exceptions

Sept 30, 2016 Sprenkle - CSCI209 35

THROWING EXCEPTIONS

Sept 30, 2016 Sprenkle - CSCI209 36

Methods and Exceptions Example

BufferedReader has method readLine()

Reads a line from a stream, such as a file or network
connection

Method header: Part of Advertising
' A

I 1
public String readLine() throws IOException

Interpreting the header: readLine will
return a String (if everything went right)
throw an IOException (if something went wrong)

Sept 30, 2016 Sprenkle - CSCI209 37

Advertising Checked Exceptions

Advertising: in Javadoc, document under what
conditions each exception is thrown

@throws tag
Examples of when your method should advertise
the checked exceptions that it may throw

Your method calls a method that throws a checked
exception

Your method detects an error in its processing and
decides to throw an exception

Sept 30, 2016 Sprenkle - CSCI209 38

Example: Passing an Exception “Up”

public String readData(BufferedReader 1in)
throws IOException {
String strl = in.readlLine();

y return stril; \Throws an IOException

readData() calls readLine(), which can throw an
IOException

If readlLine()throws this exception to our
method
readData() throws the exception as well
Whoever calls readData will handle exception

Sept 30, 2016 Sprenkle - CSCI209 39

Throwing An Exception We Created

if (grade < @ || grade > 100) {
throw new IllegalArgumentException();
ks

Create a new object of class
I1legalArgumentException

Class derived from RuntimeException
throw it

Method ends at this point

Calling method handles exception

Equivalent in Python?

Sept 30, 2016 Sprenkle - CSCI209 40

A More Descriptive Exception

Four constructors for most Exception classes
Default (no parameters)
Takesa String message

Describe the condition that generated this exception
more fully

2 more
if (grade < @ || grade > 100) {

throw new IllegalArgumentException(
"Grade is not in valid range (0-100)");

Best messages include all state that
Sept 30, 2016 could have contributed to the problem 41

Common Exceptions

I1legalArgumentException When caller passes in inappropriate
argument

I1llegalStateException Invocation is illegal because of receiving
object’s state. (Ex: closing a closed
window)

Both inherit from RuntimeException

May seem like these cover everything but only used for
certain kinds of illegal arguments and exceptions

Not used when

A null argument passed in; should be a
NullPointerkxception

Pass in invalid index for an array; should be an
IndexOutOfBoundsException

Sept 30, 2016 Sprenkle - CSCI209 42

Goal: Failure Atomicity

After an object throws an exception, the object
should be in a well-defined, usable state

» A failed method invocation should leave object in state
prior to invocation

Approaches:
» Check parameters/state before performing operation(s)
» Do the failure-prone operations first
> Use recovery code to “rollback” state
» Apply to temporary object first, then copy over values

Sept 30, 2016 Sprenkle - CSCI209 43

CATCHING EXCEPTIONS

Sept 30, 2016 Sprenkle - CSCI209 44

Exception Classification Part of java. lang

package
> Throwable
*@
06
O

> .
S Error Exception

AN

Unghecked

'IOException
RuntimeException

Others... /N
Checked:All non-

RuntimeExceptions SQLException

Checked

Sept 30, 2016 Sprenkle - CSCI209 45

Catching Exceptions

After we throw an exception, some part of
program needs to catch it

» Knows how to deal with the situation that caused
the exception

»Handles the problem—hopefully gracefully, without
exiting

Sept 30, 2016 Sprenkle - CSCI209 46

Try/Catch Block

The simplest way to catch an exception
Syntax:

— Python equivalent?

code;
more code;

ks
catch (ExceptionType e) {

error code for ExceptionType;
ks

catch (ExceptionType2 e) {
error code for ExceptionTypel;
ks

Sept 30, 2016 Sprenkle - CSCI209 47

try {

Try/Catch Block code;

more code;

ks

catch (ExceptionType e) {
error code for
ExceptionType

ks

Code in try block runs first

If try block completes without an exception,
catch block(s) are not executed
If try code generates an exception
A catch block runs
Remaining code in try block is not executed
If an exception of a type other than

ExceptionType isthrown inside try block,
method exits immediately*

Sept 30, 2016 Sprenkle - CSCI209 48

Try/Catch Block

try { . You can have more than one
code;
nore. code; catch block
} To handle > 1 type of
catch (ExceptionType e) { exception
error code for .
ExceptionType If exception is not of type
} ExceptionTypel, falls to
catch (ExceptionType2 e) { ExceptionTypeZ, and so
error code forth
for ExceptionTypel
3 Run the first matching catch
block

Can catch any exception with Exception e
but won’t have customized messages

Sept 30, 2016

Sprenkle - CSCI209 49

Try/Catch Example

public void read(B

ufferedReader in) {

n done = false;
(!'done) {
String line=in.readlLine();

// above could throw IOException!

if (line == null)
done = true;

catch (IOException ex) {

try {
boolea
while
}

}
ex.pri

}

ntStackTrace();

Prints out stack trace to method call

Sept 30, 2016

that caused the error

Sprenkle - CSCI209 50

Try/Catch Example

public void read(BufferedReader in) {
try {
boolean done = false;
while (!done) {
String line=in.readlLine();
// above could throw IOException!
if (line == null)
done = true;
ks
ks
catch (IOException ex) {
ex.printStackTrace();

More precise catch may help pinpoint error
But could result in messier code
Sept 30, 2016 Sprenkle - CSCI209 51

The finally Block oy

Optional: add a finally block },.c, cexception e §
after all catch blocks
Code in finally block always %"'i.nally g
runs after code in try and/or "
catch blocks

After try block finishes or, if an
exception occurs, after the
catch block finishes

Allows you to clean up or do maintenance before
method ends (one way or the other)

E.g., closing files or database connections
FinallyTest.java52

Sept 30, 2016 Sprenkle - CSCI209

What to do with a Caught Exception?

Dump the stack after the exception occurs
What else can we do?

Generally, two options:
Catch the exception and recover from it
Pass exception up to whoever called it

Sept 30, 2016 Sprenkle - CSCI209 53

Handled ___- GUI
To Throw or Catch? here

Problem: lower-level exception
propagated up to higher-level code

Example: user enters account DtB
information and gets exception message Exception
“field exceeds allowed length in here
database”

Lost context

Lower-level detail polluting higher-level
API

Solution: higher-levels should catch lower-level exceptions
and throw them in terms of higher-level abstraction

Sept 30, 2016 Sprenkle - CSCI209 54

Exception Translation

try {
// Call lower-level abstraction

catch (LowerLevelException ex) {

// log exception ..
throw new HigherLevelException(..);

3
Special case: Exception Chaining
» When higher-level exception needs info from lower-

level exception
try { Most standard

// Call lower-level abstraction Exceptions have this
constructor

ks

catch (LowerLevelException cause) {
// log exception .. 4/
throw new HigherLevelException(cause);

3
55

Serre oy e e

Guidelines for Exception Translation

Try to ensure that lower-level APIs succeed
» Ex: verify that your parameters satisfy invariants
Insulate higher-level from lower-level exceptions
» Handle in some reasonable way
» Always log problem so admin can check
If can’t do previous two, then use exception
translation

Sept 30, 2016 Sprenkle - CSCI209 56

Summary: Methods Throwing Exceptions

APl documentation tells you if a method can
throw an exception
If so, you must handle it

If your method could possibly throw an exception
(by generating it or by calling another method
that could), advertise it!

If you can’t handle every error, that’s OK...let
whoever is calling you worry about it

However, they can only handle the error if you
advertise the exceptions you can’t deal with

Sept 30, 2016 Sprenkle - CSCI209 57

Programming with Exceptions

Exception handling is slow

Use one big try block instead of

nesting try-catch blocks
Speeds up Exception Handling
Otherwise, code gets too messy

1
catch OO {

Don't ignore exceptions (e.g., catch !

block does nothing)
Better to pass them along to higher calls

try {

catch OO {
Sept 30, 2016 Sprenkle - CSCI209 }

Creating Our Own Exception Class

Try to reuse an existing exception
Match in name as well as semantics

If you cannot find a predefined Java Exception
class that describes your condition, implement a
new Exception class!

Sept 30, 2016 Sprenkle - CSCI209 59

Creating Our Own Exception Class

public class FileFormatException extends IOException {
public FileFormatException() {

1 What happens in this constructor implicitly?

public FileFormatException(String message) {
super(message);
ks

// other 2 standard constructors..

Is this a checked or unchecked exception?

Can now throw exceptions of type
FileFormatException

Sept 30, 2016 Sprenkle - CSCI209 60

Guidelines for Creating Your Own Exception
Classes

Include accessor methods to get more
information about the cause of the exception

“failure-capture information”

Checked or unchecked exception?

Checked: forces APl user to handle BUT more difficult
to use API

Has to handle all checked exceptions
Use checked exception if exceptional condition
cannot be prevented by proper use of APl and API
user can take a useful action afterward

Sept 30, 2016 Sprenkle - CSCI209 61

Practice: Designing a New Exception Class

Scenario: When an attempt to make a purchase
with a gift card fails because card doesn’t have
enough money, throw a new exception that you
created

Recall that all Exceptions are Throwable,
so they have the methods: getMessage(),
printStackTrace(),
getStackTrace()

* How would someone else use your class?
* What constructors, additional method(s) may you
want to add for your exception class?

Sept 30, 2016 Sprenkle - CSCI209 62

Benefits of Exceptions?

Sept 30, 2016 Sprenkle - CSCI209 63

Javadoc Guidelines about @throws

Always report if throw checked exceptions
Report any unchecked exceptions that the caller
might reasonably want to catch

Exception: NuL1PointerException

Allows caller to handle (or not)

Document exceptions that are independent of the

underlying implementation
Errors should not be documented as they are
unpredictable

Sept 30, 2016 Sprenkle - CSCI209 64

