
9/28/16	

1	

Objec-ves	
• Collec-ons	

Ø Maps	

• Traversing	Collec-ons	
• Excep-on	handling	

Sept	30,	2016	 Sprenkle	-	CSCI209	 1	

Review:	Collec-ons	Framework	
• Interfaces	

Ø Abstract	data	types	that	represent	collec-ons	
Ø Collec-ons	can	be	manipulated	independently	of	
implementa-on	 		

• Implementa.ons	
Ø Concrete	implementa-ons	of	collec-on	interfaces	
Ø Reusable	data	structures	

• Algorithms	
Ø Methods	that	perform	useful	computa-ons	on	
collec-ons,	e.g.,	searching	and	sor-ng	

Ø Reusable	func-onality	
Ø Polymorphic:	same	method	can	be	used	on	many	
different	implementa-ons	of	collec-on	interface	

Sept	30,	2016	 Sprenkle	-	CSCI209	 2	

9/28/16	

2	

Review:	Core	Collec-on	Interfaces	
• Encapsulate	different	types	of	collec-ons	

Sept	30,	2016	 Sprenkle	-	CSCI209	 3	

MAPS	

Sept	30,	2016	 Sprenkle	-	CSCI209	 4	

9/28/16	

3	

Maps	
• Maps	keys	(of	type	<K>)	to	values	(of	type	
<V>)	

• No	duplicate	keys	
Ø Each	key	maps	to	at	most	one	value	

Sept	30,	2016	 Sprenkle	-	CSCI209	 5	

Map Interface	
• <V> put(<K> key, <V> value)
Ø Returns old value that key mapped to

• <V> get(Object key)
Ø Returns value at that key (or null if no

mapping)

• Set<K> keySet()
Ø Returns the set of keys

Sept	30,	2016	 Sprenkle	-	CSCI209	 6	

And more …

9/28/16	

4	

A few Map Implementa-ons	
• HashMap

Ø Fast	

• TreeMap
Ø Sor-ng	
Ø Key-ordered	itera-on	

• LinkedHashMap
Ø Fast	
Ø Inser-on-order	itera-on	

Sept	30,	2016	 Sprenkle	-	CSCI209	 7	

Declaring	Maps	
• Declare	types	for	both	keys	and	values	
• class HashMap<K,V>

Sept	30,	2016	 Sprenkle	-	CSCI209	 8	

Keys are Strings
Values are Lists of Strings

Map<String, List<String>> map
= new HashMap<>();

Keys are Strings
Values are Integers

Map<String, Integer> map = new HashMap<>();

9/28/16	

5	

ALGORITHMS	

Sept	30,	2016	 Sprenkle	-	CSCI209	 9	

Collec-ons	Framework’s	Algorithms	
• Polymorphic	algorithms		
• Reusable	func-onality		
• Implemented	in	the	Collections class	

Ø Sta-c	methods,	1st	argument	is	the	collec-on	

Ø Similar	to	Arrays	class,	which	operates	on	arrays	

Sept	30,	2016	 Sprenkle	-	CSCI209	 10	

9/28/16	

6	

Overview	of	Available	Algorithms	
• Sor-ng	–	op-onal	Comparator
• Shuffling	
• Searching	–	binarySearch	
• Rou-ne	data	manipula-on:	reverse*,	copy*,	fill*,	
swap*,	addAll	

• Composi-on	–	frequency,	disjoint	
• Finding	min,	max	

Sept	30,	2016	 Sprenkle	-	CSCI209	 11	

* Only Lists

TRAVERSING	COLLECTIONS	

Sept	30,	2016	 Sprenkle	-	CSCI209	 12	

9/28/16	

7	

Two	Ways	to	Iterate	over	Collec-ons	
• For-each	loop	
• Iterator	

Sept	30,	2016	 Sprenkle	-	CSCI209	 13	

Traversing	Collec-ons:	For-each	Loop	
• For-each	loop:	

• Valid	for	all	Collections
Ø Maps (and	its	implementa-ons)	are	not	
Collections
• But,	Map’s	keySet()	is	a	Set and	values()	is	a	
Collection

Sept	30,	2016	 Sprenkle	-	CSCI209	 14	

for (Object o : collection)
 System.out.println(o);

Or whatever data type is appropriate

9/28/16	

8	

Traversing	Collec-ons:	Iterator	
• Iterator: Java	Interface	
• To	get	an	Iterator from	a	Collection
object:		

Ø Returns	an	Iterator over	the	elements	in	this	
collec-on	

Ø Example:	

Sept	30,	2016	 Sprenkle	-	CSCI209	 15	

Iterator<E> iterator()

Iterator<String> iter = keys.iterator();

Sept	30,	2016	 Sprenkle	-	CSCI209	 16	

Iterator:	Like	a	Cursor	
• Always	between	two	elements	

Iterator<Integer> i = list.iterator();
while(i.hasNext()) {

int value = i.next();
…

}

9/28/16	

9	

Iterator API
• <E> next()

Ø Get	the	next	element	

•  boolean hasNext()
Ø Are	there	more	elements?		

•  void remove()
Ø Remove	the	previous	element	
Ø Only	safe	way	to	remove	elements	during	itera-on	

• Not	known	what	will	happen	if	remove	elements	in	
for-each	loop	

Sept	30,	2016	 Sprenkle	-	CSCI209	 17	

Sept	30,	2016	 Sprenkle	-	CSCI209	 18	

Polymorphic	Filter	Algorithm	

static void filter(Collection c) {
 Iterator i = c.iterator();

while(i.hasNext()) {
// if the next element does not
// adhere to the condition, remove it
if (! condition(i.next())) {

 i.remove();
}

 }
}

Polymorphic: works regardless of Collection implementation

9/28/16	

10	

Sept	30,	2016	 Sprenkle	-	CSCI209	 19	

Traversing	Lists:	ListIterator
• Methods	to	traverse	list	backwards	too	

Ø hasPrevious()
Ø previous()

• To get a ListIterator:
Ø listIterator(int position)

• Pass	in	size()	as	posi-on	to	get	at	end	of	list	

Key difference

Sept	30,	2016	 Sprenkle	-	CSCI209	 20	

Enumeration
• Legacy	class	
• Similar	to	Iterator
• Example methods:

Ø boolean hasMoreElements()
Ø Object nextElement()

• Longer	method	names	
• Doesn’t	have	remove	opera-on

9/28/16	

11	

How	Not	to	Iterate	
• Don’t	use	get	to	access	List

Ø If	implementa-on	is	a	LinkedList,		
performance	is	reeeeeally	slow	

Sept	30,	2016	 Sprenkle	-	CSCI209	 21	

for (int i = 0; i < list.size(); i++) {
count += list.get(i); // do something

}

Sept	30,	2016	 Sprenkle	-	CSCI209	 22	

Synchronized	Collec-on	Classes	
• For	mul-ple	threads	sharing	same	collec-on	
• Slow	down	typical	programs	

Ø Avoid	for	now	
• e.g.,	Vector, Hashtable
• See	java.util.concurrent

Another example: StringBuffer is synchronized, �
whereas StringBuilder is not

9/28/16	

12	

Benefits	of	Collec-ons	Framework	
• ??	

Sept	30,	2016	 Sprenkle	-	CSCI209	 23	

EXCEPTIONS	

Sept	30,	2016	 Sprenkle	-	CSCI209	 24	

9/28/16	

13	

Sept	30,	2016	 Sprenkle	-	CSCI209	 25	

Errors	
• Programs	encounter	errors	when	they	run	

Ø Users	may	enter	data	in	the	wrong	form	
Ø Files	may	not	exist	
Ø Program	code	has	bugs!*	

• When	an	error	occurs,	a	program	should	do	one	
of	two	things:	
Ø Revert	to	a	stable	state	and	con-nue	
Ø Allow	the	user	to	save	data	and	then	exit	the	
program	gracefully	

* (Of course, not your programs)

Sept	30,	2016	 Sprenkle	-	CSCI209	 26	

Java	Method	Behavior	
• Normal/correct	case:	return	specified	return	type	
• Error	case:	does	not	return	anything,	throws
an	Exception
Ø An	excep-on	is	an	event	that	occurs	during	execu-on	
of	a	program	that	disrupts	normal	flow	of	program's	
instruc-ons

Ø Exception: object	that	encapsulates	error	
informa-on	

Similar to Python

9/28/16	

14	

Sept	30,	2016	 Sprenkle	-	CSCI209	 27	

Handling	Excep-ons	
• JVM’s	excep.on-handling	mechanism	searches	for	an	
excep.on	handler—the	error	recovery	code	
Ø  Excep-on	handler	deals	with	a	par3cular	excep-on	
Ø  Searches	call	stack	for	a	method	that	can	handle	(or	catch)	the	

excep-on	

1	

2	

3	

4	

Ca
ll	
st
ac
k	

Search order for handler

Sept	30,	2016	 Sprenkle	-	CSCI209	 28	

Throwable
• All	excep-ons	indirectly	derive	from	Throwable

Ø Child	classes:	Error	and	Exception
• Important	Throwable methods	

Ø getMessage()
• Detailed	message	about	error	

Ø printStackTrace()
• Prints	out	where	problem	occurred	and	path	to	reach	
that	point	

Ø getStackTrace()
• Get	the	stack	in	non-text	format		

Error

Throwable

Exception

9/28/16	

15	

Sept	30,	2016	 Sprenkle	-	CSCI209	 29	

Prin-ng	Stack	Trace	Example	

How helpful is this output?
How user friendly is it?

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

Sept	30,	2016	 Sprenkle	-	CSCI209	 30	

Excep-on	Classifica-on:	Error
• An	internal	error	
• Strong	conven-on:	reserved	for	JVM	

Ø JVM-generated	when	resource	exhaus-on	or	an	
internal	problem	
• Example:	Out	of	Memory	error		

• Program’s	code	should	not	and	can	not	throw	an	
object	of	this	type	

• Unchecked	excep-on		

When can that
happen in Java?

9/28/16	

16	

Sept	30,	2016	 Sprenkle	-	CSCI209	 31	

Excep-on	Classifica-on:	Exception
1.  RuntimeException:	something	that	

happens	because	of	a	programming	error	
Ø Unchecked	excep-on	
Ø Examples:	ArrayOutOfBoundsException,
NullPointerException,
ClassCastException

2.   Checked	excep-ons	
Ø A	well-wriren	applica-on	should	an-cipate	and	
recover	from	
• Compiler	enforces	

Ø Examples:	IOException, SQLException

Error

Sept	30,	2016	 Sprenkle	-	CSCI209	 32	

Excep-on	Classifica-on	
Throwable

Exception

IOException
RuntimeException

SQLException

Others…

Unchecked
Checked

Checked	

Checked: All non-
RuntimeExceptions

Part	of	java.lang
package	

9/28/16	

17	

Types	of	Excep-ons	
Unchecked	
• Any	excep-on	that	derives	
from	Error or	
RuntimeException

•  Programmer	does	not	
create/handle	

•  Try	to	make	sure	that	they	
don’t	occur		

• Osen	indicates	programmer	
error	
Ø  E.g.,	precondi-on	viola-ons,	

not	using	API	correctly	

Checked	
• Any	other	excep-on
•  Programmer	creates	and	
handles	checked	excep-ons	

• Compiler-enforced	checking	
Ø  Improves	reliability*	

•  For	condi-ons	from	which	
caller	can	reasonably	be	
expected	to	recover	

Sept	30,	2016	 Sprenkle	-	CSCI209	 33	

Types	of	Unchecked	Excep-ons	
1.  Derived	from	the	class	Error

Ø Any	line	of	code	can	generate	because	it	is	an		
internal	error	

Ø Don’t	worry	about	what	to	do	if	this	happens	
2.  Derived	from	the	class	RuntimeException

Ø Indicates	a	bug	in	the	program	
Ø Fix	the	bug	
Ø Examples:	ArrayOutOfBoundsException,
NullPointerException,
ClassCastException

Sept	30,	2016	 Sprenkle	-	CSCI209	 34	

9/28/16	

18	

Checked	Excep-ons	
• Need	to	be	handled	by	your	program	

Ø Compiler-enforced	
Ø Improves	reliability*	

• For	each	method,	tell	the	compiler:	
Ø What	the	method	returns	
Ø What	could	possibly	go	wrong	

• Adver3se	the	excep-ons	that	a	method	throws	
• Helps	users	of	your	interface	know	what	method	does	
and	lets	them	decide	how	to	handle	excep-ons	

Sept	30,	2016	 Sprenkle	-	CSCI209	 35	

THROWING	EXCEPTIONS	

Sept	30,	2016	 Sprenkle	-	CSCI209	 36	

9/28/16	

19	

Methods	and	Excep-ons	Example	
• BufferedReader has	method	readLine()	

Ø Reads	a	line	from	a	stream,	such	as	a	file	or	network	
connec-on	

• Method	header:	

• Interpre-ng	the	header:	readLine will	
Ø return	a	String	(if	everything	went	right)	
Ø throw	an	IOException	(if	something	went	wrong)	

Sept	30,	2016	 Sprenkle	-	CSCI209	 37	

public String readLine() throws IOException

Part	of	Adver-sing	

Adver-sing	Checked	Excep-ons	
• Adver-sing:	in	Javadoc,	document	under	what	
condi-ons	each	excep-on	is	thrown	
Ø @throws tag	

• Examples	of	when	your	method	should	adver-se	
the	checked	excep-ons	that	it	may	throw	
Ø Your	method	calls	a	method	that	throws	a	checked	
excep-on	

Ø Your	method	detects	an	error	in	its	processing	and	
decides	to	throw	an	excep-on	

Sept	30,	2016	 Sprenkle	-	CSCI209	 38	

9/28/16	

20	

Sept	30,	2016	 Sprenkle	-	CSCI209	 39	

Example:	Passing	an	Excep-on	“Up”	

• readData()	calls	readLine(),	which	can	throw	an	
IOException		

• If readLine()	throws	this	excep-on	to	our	
method	
Ø readData() throws	the	excep-on	as	well	
Ø Whoever	calls	readData	will	handle	excep-on	

public String readData(BufferedReader in)
 throws IOException {

String str1 = in.readLine();
return str1;

} Throws an IOException

Sept	30,	2016	 Sprenkle	-	CSCI209	 40	

Throwing	An	Excep-on	We	Created	

1.  Create	a	new	object	of	class	
IllegalArgumentException
Ø Class	derived	from	RuntimeException

2. throw it	
Ø Method	ends	at	this	point	
Ø Calling	method	handles	excep-on	

if (grade < 0 || grade > 100) {
throw new IllegalArgumentException();

}

Equivalent in Python?

9/28/16	

21	

Sept	30,	2016	 Sprenkle	-	CSCI209	 41	

A	More	Descrip-ve	Excep-on	
• Four	constructors	for	most	Excep-on	classes	

Ø Default	(no	parameters)	
Ø Takes	a	String message

• Describe	the	condi-on	that	generated	this	excep-on	
more	fully	

Ø 2	more	

Best messages include all state that
could have contributed to the problem

if (grade < 0 || grade > 100) {
throw new IllegalArgumentException(

"Grade is not in valid range (0-100)");
}

Common	Excep-ons	
Name	 Purpose	
IllegalArgumentException When	caller	passes	in	inappropriate	

argument	
IllegalStateException Invoca-on	is	illegal	because	of	receiving	

object’s	state.		(Ex:	closing	a	closed	
window)	

• Both	inherit	from	RuntimeException
• May	seem	like	these	cover	everything	but	only	used	for	
certain	kinds	of	illegal	arguments	and	excep-ons	

• Not	used	when	
Ø  A	null	argument	passed	in;	should	be	a	
NullPointerException	

Ø  Pass	in	invalid	index	for	an	array;	should	be	an	
IndexOutOfBoundsException		

Sept	30,	2016	 Sprenkle	-	CSCI209	 42	

9/28/16	

22	

Goal:	Failure	Atomicity	
• Aser	an	object	throws	an	excep-on,	the	object	
should	be	in	a	well-defined,	usable	state	
Ø A	failed	method	invoca-on	should	leave	object	in	state	
prior	to	invoca-on	

• Approaches:	
Ø Check	parameters/state	before	performing	opera-on(s)	
Ø Do	the	failure-prone	opera-ons	first	
Ø Use	recovery	code	to	“rollback”	state	
Ø Apply	to	temporary	object	first,	then	copy	over	values	

Sept	30,	2016	 Sprenkle	-	CSCI209	 43	

CATCHING	EXCEPTIONS	

Sept	30,	2016	 Sprenkle	-	CSCI209	 44	

9/28/16	

23	

Error

Sept	30,	2016	 Sprenkle	-	CSCI209	 45	

Excep-on	Classifica-on	
Throwable

Exception

IOException
RuntimeException

SQLException

Others…

Unchecked
Checked

Checked	

Checked: All non-
RuntimeExceptions

Part	of	java.lang
package	

Sept	30,	2016	 Sprenkle	-	CSCI209	 46	

Catching	Excep-ons	
• Aser	we	throw	an	excep-on,	some	part	of	
program	needs	to	catch	it	
Ø Knows	how	to	deal	with	the	situa-on	that	caused	
the	excep-on	

Ø Handles	the	problem—hopefully	gracefully,	without	
exi-ng	

9/28/16	

24	

Sept	30,	2016	 Sprenkle	-	CSCI209	 47	

Try/Catch	Block	

• The	simplest	way	to	catch	an	excep-on	
• Syntax:	

try {
code;
more code;

}
catch (ExceptionType e) {

error code for ExceptionType;
}
catch (ExceptionType2 e) {

error code for ExceptionType2;
}
…

Python equivalent?

Sept	30,	2016	 Sprenkle	-	CSCI209	 48	

Try/Catch	Block	

• Code	in	try	block	runs	first	
• If	try	block	completes	without	an	excep-on,	
catch	block(s)	are	not	executed	

• If	try	code	generates	an	excep-on	
Ø A	catch	block	runs	
Ø Remaining	code	in	try		block	is	not	executed	

• If	an	excep-on	of	a	type	other	than	
ExceptionType is	thrown	inside	try	block,	
method	exits	immediately*	

try {
code;
more code;

}
catch (ExceptionType e) {

error code for
ExceptionType

}

9/28/16	

25	

Sept	30,	2016	 Sprenkle	-	CSCI209	 49	

Try/Catch	Block	

• You	can	have	more	than	one	
catch	block	
Ø To	handle	>	1	type	of	
excep-on	

• If	excep-on	is	not	of	type	
ExceptionType1,	falls	to	
ExceptionType2,	and	so	
forth	
Ø Run	the	first	matching	catch	
block	

try {
code;
more code;

}
catch (ExceptionType e) {

error code for
ExceptionType

}
catch (ExceptionType2 e) {

error code
for ExceptionType2

}

Can catch any exception with Exception e
but won’t have customized messages

Sept	30,	2016	 Sprenkle	-	CSCI209	 50	

Try/Catch	Example	
public void read(BufferedReader in) {

try {
boolean done = false;
while (!done) {

String line=in.readLine();
// above could throw IOException!
if (line == null)

done = true;
}

}
catch (IOException ex) {

ex.printStackTrace();
}

}
Prints out stack trace to method call

that caused the error

9/28/16	

26	

Sept	30,	2016	 Sprenkle	-	CSCI209	 51	

Try/Catch	Example	
public void read(BufferedReader in) {

try {
boolean done = false;
while (!done) {

String line=in.readLine();
// above could throw IOException!
if (line == null)

done = true;
}

}
catch (IOException ex) {

ex.printStackTrace();
}

}
More precise catch may help pinpoint error

But could result in messier code

Sept	30,	2016	 Sprenkle	-	CSCI209	 52	

The	finally Block	

• Allows	you	to	clean	up	or	do	maintenance	before	
method	ends	(one	way	or	the	other)	
Ø E.g.,	closing	files	or	database	connec-ons	

try {
…

}
catch (Exception e) {

…
}
finally {

…
}

• Op-onal:	add	a	finally	block	
aser	all	catch	blocks	
Ø Code	in	finally block	always	
runs	aser	code	in	try and/or	
catch	blocks	
• Aser	try block	finishes	or,	if	an	
excep-on	occurs,	aser	the	
catch	block	finishes	

FinallyTest.java

9/28/16	

27	

What	to	do	with	a	Caught	Excep-on?	
• Dump	the	stack	aser	the	excep-on	occurs	

Ø What	else	can	we	do?	

• Generally,	two	op-ons:	
1.  Catch	the	excep-on	and	recover	from	it	
2.  Pass	excep-on	up	to	whoever	called	it	

Sept	30,	2016	 Sprenkle	-	CSCI209	 53	

To	Throw	or	Catch?	
• Problem:	lower-level	excep-on	
propagated	up	to	higher-level	code	

• Example:	user	enters	account	
informa-on	and	gets	excep-on	message	
“field	exceeds	allowed	length	in	
database”	
Ø Lost	context	
Ø Lower-level	detail	pollu-ng	higher-level	
API	

Sept	30,	2016	 Sprenkle	-	CSCI209	 54	

Solution: higher-levels should catch lower-level exceptions �
and throw them in terms of higher-level abstraction

GUI		

DB	

…	

Excep-on	
here	

Handled
here

9/28/16	

28	

Excep-on	Transla-on	

• Special	case:	Excep-on	Chaining	
Ø When	higher-level	excep-on	needs	info	from	lower-
level	excep-on	

Sept	30,	2016	 Sprenkle	-	CSCI209	 55	

try {
// Call lower-level abstraction

}
catch (LowerLevelException ex) {

// log exception …
throw new HigherLevelException(…);  

}

try {
// Call lower-level abstraction

}
catch (LowerLevelException cause) {

// log exception …
throw new HigherLevelException(cause);  

}

Most standard
Exceptions have this

constructor

Guidelines	for	Excep-on	Transla-on	
• Try	to	ensure	that	lower-level	APIs	succeed	

Ø Ex:	verify	that	your	parameters	sa-sfy	invariants	

• Insulate	higher-level	from	lower-level	excep-ons	
Ø Handle	in	some	reasonable	way	
Ø Always	log	problem	so	admin	can	check	

• If	can’t	do	previous	two,	then	use	excep-on	
transla-on	

Sept	30,	2016	 Sprenkle	-	CSCI209	 56	

9/28/16	

29	

Summary:	Methods	Throwing	Excep-ons	
• API	documenta-on	tells	you	if	a	method	can	
throw	an	excep-on	
Ø If	so,	you	must	handle	it	

• If	your	method	could	possibly	throw	an	excep-on	
(by	genera-ng	it	or	by	calling	another	method	
that	could),	adver-se	it!			
Ø If	you	can’t	handle	every	error,	that’s	OK…let	
whoever	is	calling	you	worry	about	it	

Ø However,	they	can	only	handle	the	error	if	you	
adver-se	the	excep-ons	you	can’t	deal	with	

Sept	30,	2016	 Sprenkle	-	CSCI209	 57	

Programming	with	Excep-ons	
• Excep-on	handling	is	slow	

• Use	one	big	try block	instead	of	
nes-ng	try-catch blocks	
Ø Speeds	up	Excep-on	Handling	
Ø Otherwise,	code	gets	too	messy	

• Don't	ignore	excep-ons	(e.g.,	catch
block	does	nothing)	
Ø Berer	to	pass	them	along	to	higher	calls		

Sept	30,	2016	 Sprenkle	-	CSCI209	 58	

try {
}
catch () {  
}
try {
}
catch () {  
}

try {
try {
}
catch () {  
}

}
catch () {  
}

try {
…
…

}
catch () {  
}

9/28/16	

30	

Crea-ng	Our	Own	Excep-on	Class	
• Try	to	reuse	an	exis-ng	excep-on	

Ø Match	in	name	as	well	as	seman-cs	

• If	you	cannot	find	a	predefined	Java	Exception	
class	that	describes	your	condi-on,	implement	a	
new	Exception	class!	

Sept	30,	2016	 Sprenkle	-	CSCI209	 59	

Sept	30,	2016	 Sprenkle	-	CSCI209	 60	

Crea-ng	Our	Own	Excep-on	Class	

public class FileFormatException extends IOException {
public FileFormatException() {

}

public FileFormatException(String message) {
super(message);

}

// other 2 standard constructors…
}

• Can	now	throw	excep-ons	of	type	
FileFormatException

What happens in this constructor implicitly?

Is this a checked or unchecked exception?

9/28/16	

31	

Guidelines	for	Crea-ng	Your	Own	Excep-on	
Classes	

• Include	accessor	methods	to	get	more	
informa-on	about	the	cause	of	the	excep-on	
Ø “failure-capture	informa-on” 		

• Checked	or	unchecked	excep-on?	
Ø Checked:	forces	API	user	to	handle	BUT	more	difficult	
to	use	API	
• Has	to	handle	all	checked	excep-ons	

Ø Use	checked	excep-on	if	excep-onal	condi-on	
cannot	be	prevented	by	proper	use	of	API	and	API	
user	can	take	a	useful	ac-on	aserward	

Sept	30,	2016	 Sprenkle	-	CSCI209	 61	

Prac-ce:	Designing	a	New	Excep-on	Class	

• Scenario:	When	an	arempt	to	make	a	purchase	
with	a	gis	card	fails	because	card	doesn’t	have	
enough	money,	throw	a	new	excep-on	that	you	
created	

• Recall	that	all	Exceptions	are	Throwable,	
so	they	have	the	methods:	getMessage(),
printStackTrace(),
getStackTrace()

Sept	30,	2016	 Sprenkle	-	CSCI209	 62	

• How would someone else use your class?
• What constructors, additional method(s) may you
want to add for your exception class?

9/28/16	

32	

Sept	30,	2016	 Sprenkle	-	CSCI209	 63	

Benefits	of	Excep-ons?	

Javadoc	Guidelines	about	@throws	
• Always	report	if	throw	checked	excep-ons	
• Report	any	unchecked	excep-ons	that	the	caller	
might	reasonably	want	to	catch	
Ø Excep-on:	NullPointerException	
Ø Allows	caller	to	handle	(or	not)	
Ø Document	excep-ons	that	are	independent	of	the	
underlying	implementa-on	

• Errors	should	not	be	documented	as	they	are	
unpredictable	

Sept	30,	2016	 Sprenkle	-	CSCI209	 64	

