
9/30/16	

1	

Objec-ves	
• Jar	files	

• Excep-ons	
Ø Wrap	up	
Ø Why	Excep-ons?	

• Files	
• Streams	

Oct	3,	2016	 Sprenkle	-	CSCI209	 1	

JAR	FILES	

Oct	3,	2016	 Sprenkle	-	CSCI209	 2	

9/30/16	

2	

Jar	(Java	Archive)	Files	
• Archives	of	Java	files	
• Package	code	into	a	neat	bundle	to	distribute	

Ø Easier,	faster	to	download	
Ø Easier	for	others	to	use	

• jar command:	create,	view,	and	extract	Jar	
files	
Ø Works	similarly	to	tar
jar cf myapplication.jar *.class

• Run	it	using	java		
java -jar myapplication.jar

Oct	3,	2016	 Sprenkle	-	CSCI209	 3	

Jar/Tar	Commands	
• Common	op-ons:	

• Common	use:	
Ø jar cfz archive.jar.gz arch_directory
Ø jar xfz archive.jar.gz

Oct	3,	2016	 Sprenkle	-	CSCI209	 4	

Option/
Operations Meaning

f The name of the archive file
c Create an archive file
x Extract the archive file
v Verbose
z Zip (compress)
t Table of contents (list contents)

9/30/16	

3	

Jar	file:	Metadata	
• Jar	file	includes	a	special	metadata	file	with	the	
path	META-INF/MANIFEST.MF
Ø Say	how	Jar	file	is	used	
Ø jar creates	a	default	metadata	file,	if	not	specified

Oct	3,	2016	 Sprenkle	-	CSCI209	 5	

Jar	file:	Metadata	
• Example	metadata	file	that	allows	you	to	execute	
the	JAR	with	java	

• To	create	the	jar	file:	
jar cmf myManifest myapplication.jar *.class

• Run	it	using	java		
java -jar myapplication.jar

Oct	3,	2016	 Sprenkle	-	CSCI209	 6	

Specifying the metadata file

Manifest-Version: 1.0
Main-Class: MyApplication

Note the newline

9/30/16	

4	

Crea-ng	Jar	Files	in	Eclipse	
• Export	à	Java	à	Jar	file	

Ø Op-ons	to	create	a	MANIFEST.MF	file	
Ø Op-ons	to	include	source	files	or	only	class	files	

• Should	submit	assignments	this	way	
Ø Must	include	source	files	

• Look	for	checkbox	

Oct	3,	2016	 Sprenkle	-	CSCI209	 7	

EXCEPTIONS	

Oct	3,	2016	 Sprenkle	-	CSCI209	 8	

9/30/16	

5	

Discussion:	Why	Checked	and	Unchecked	
Excep-ons?	

• Why	do	we	have	excep-ons	that	the	compiler	
doesn’t	force	the	programmer	to	check?	
Ø Think	about	examples	of	unchecked	excep-ons	
(ArrayOutOfBoundsException,
NullPointerException,
ClassCastException)	and	when	those	
excep-ons	can	occur	

Oct	3,	2016	 Sprenkle	-	CSCI209	 9	

Methods	and	Excep-ons	Example	
• BufferedReader has	method	readLine()	

Ø Reads	a	line	from	a	stream,	such	as	a	file	or	network	
connec-on	

• Method	header:	

• Interpre-ng	the	header:	readLine will	
Ø return	a	String	(if	everything	went	right)	
Ø throw	an	IOException	(if	something	went	wrong)	

Oct	3,	2016	 Sprenkle	-	CSCI209	 10	

public String readLine() throws IOException

Part	of	Adver-sing	

9/30/16	

6	

Adver-sing	Checked	Excep-ons	
• Adver-sing:	in	Javadoc,	document	under	what	
condi-ons	each	excep-on	is	thrown	
Ø @throws tag	

• Examples	of	when	your	method	should	adver-se	
the	checked	excep-ons	that	it	may	throw	
Ø Your	method	calls	a	method	that	throws	a	checked	
excep-on	

Ø Your	method	detects	an	error	in	its	processing	and	
decides	to	throw	an	excep-on	

Oct	3,	2016	 Sprenkle	-	CSCI209	 11	

Javadoc	Guidelines	about	@throws	
• Always	report	if	throw	checked	excep-ons	
• Report	any	unchecked	excep-ons	that	the	caller	
might	reasonably	want	to	catch	
Ø Excep-on:	NullPointerException	
Ø Allows	caller	to	handle	(or	not)	
Ø Document	excep-ons	that	are	independent	of	the	
underlying	implementa-on	

• Errors	should	not	be	documented	as	they	are	
unpredictable	

Oct	3,	2016	 Sprenkle	-	CSCI209	 12	

9/30/16	

7	

What	to	do	with	a	Caught	Excep-on?	
• Dump	the	stack	ader	the	excep-on	occurs	

Ø What	else	can	we	do?	

• Generally,	two	op-ons:	
1.  Catch	the	excep-on	and	recover	from	it	
2.  Pass	excep-on	up	to	whoever	called	it	

Oct	3,	2016	 Sprenkle	-	CSCI209	 13	

To	Throw	or	Catch?	
• Problem:	lower-level	excep-on	
propagated	up	to	higher-level	code	

• Example:	user	enters	account	
informa-on	and	gets	excep-on	message	
“field	exceeds	allowed	length	in	
database”	
Ø Lost	context	
Ø Lower-level	detail	pollu-ng	higher-level	
API	

Oct	3,	2016	 Sprenkle	-	CSCI209	 14	

Solution: higher-levels should catch lower-level exceptions �
and throw them in terms of higher-level abstraction

GUI		

DB	

…	

Excep-on	
here	

Handled
here

9/30/16	

8	

Excep-on	Transla-on	

• Special	case:	Excep-on	Chaining	
Ø When	higher-level	excep-on	needs	info	from	lower-
level	excep-on	

Oct	3,	2016	 Sprenkle	-	CSCI209	 15	

try {
// Call lower-level abstraction

}
catch (LowerLevelException ex) {

// log exception …
throw new HigherLevelException(…);  

}

try {
// Call lower-level abstraction

}
catch (LowerLevelException cause) {

// log exception …
throw new HigherLevelException(cause);  

}

Most standard
Exceptions have this

constructor

Summary:	Methods	Throwing	Excep-ons	
• API	documenta-on	tells	you	if	a	method	can	
throw	an	excep-on	
Ø If	so,	you	must	handle	it	

• If	your	method	could	possibly	throw	an	excep-on	
(by	genera-ng	it	or	by	calling	another	method	
that	could),	adver-se	it!			
Ø If	you	can’t	handle	every	error,	that’s	OK…let	
whoever	is	calling	you	worry	about	it	

Ø However,	they	can	only	handle	the	error	if	you	
adver-se	the	excep-ons	you	can’t	deal	with	

Oct	3,	2016	 Sprenkle	-	CSCI209	 16	

9/30/16	

9	

Programming	with	Excep-ons	
• Excep-on	handling	is	slow	

• Use	one	big	try block	instead	of	
nes-ng	try-catch blocks	
Ø Speeds	up	Excep-on	Handling	
Ø Otherwise,	code	gets	too	messy	

• Don't	ignore	excep-ons	(e.g.,	catch
block	does	nothing)	
Ø Bemer	to	pass	them	along	to	higher	calls		

Oct	3,	2016	 Sprenkle	-	CSCI209	 17	

try {
}
catch () {  
}
try {
}
catch () {  
}

try {
try {
}
catch () {  
}

}
catch () {  
}

try {
…
…

}
catch () {  
}

Crea-ng	Our	Own	Excep-on	Class	
• Try	to	reuse	an	exis-ng	excep-on	

Ø Match	in	name	as	well	as	seman-cs	

• If	you	cannot	find	a	predefined	Java	Exception	
class	that	describes	your	condi-on,	implement	a	
new	Exception	class!	

Oct	3,	2016	 Sprenkle	-	CSCI209	 18	

9/30/16	

10	

Oct	3,	2016	 Sprenkle	-	CSCI209	 19	

Crea-ng	Our	Own	Excep-on	Class	

public class FileFormatException extends IOException {
public FileFormatException() {

}

public FileFormatException(String message) {
super(message);

}

// other 2 standard constructors…
}

• Can	now	throw	excep-ons	of	type	
FileFormatException

What happens in this constructor implicitly?

Is this a checked or unchecked exception?

Guidelines	for	Crea-ng	Your	Own	Excep-on	
Classes	

• Include	accessor	methods	to	get	more	
informa-on	about	the	cause	of	the	excep-on	
Ø “failure-capture	informa-on” 		

• Checked	or	unchecked	excep-on?	
Ø Checked:	forces	API	user	to	handle	BUT	more	difficult	
to	use	API	
• Has	to	handle	all	checked	excep-ons	

Ø Use	checked	excep-on	if	excep-onal	condi-on	
cannot	be	prevented	by	proper	use	of	API	and	API	
user	can	take	a	useful	ac-on	aderward	

Oct	3,	2016	 Sprenkle	-	CSCI209	 20	

9/30/16	

11	

Oct	3,	2016	 Sprenkle	-	CSCI209	 21	

Discussion:	Benefits	of	Excep-ons	
• Been	talking	about	details…			

• Why	does	Java	have	excep-ons	as	part	of	the	
language?	

• Why	does	Java	add	some	features	that	Python	
doesn’t	have?	

Oct	3,	2016	 Sprenkle	-	CSCI209	 22	

Benefits	of	Excep-ons	
• Force	error	checking/handling	

Ø Otherwise,	won’t	compile	
Ø Does	not	guarantee	“good”	excep-on	handling	

• Ease	debugging	
Ø Stack	trace	

• Separates	error-handling	code	from	“regular”	code	
Ø Error	code	is	in	catch	blocks	at	end	
Ø Descrip-ve	messages	with	excep-ons	

• Propagate	methods	up	call	stack	
Ø Let	whoever	“cares”	about	error	handle	it	

• Group	and	differen-ate	error	types	

9/30/16	

12	

FILES	

Oct	3,	2016	 Sprenkle	-	CSCI209	 23	

java.io.File	Class	
• Represents	a	file	or	directory	
• Provides	func-onality	such	as	

Ø Storage	of	the	file	on	the	disk	
Ø Determine	if	a	par-cular	file	exists	
Ø When	file	was	last	modified	
Ø Rename	file	
Ø Remove/delete	file	
Ø …	

Oct	3,	2016	 Sprenkle	-	CSCI209	 24	

9/30/16	

13	

Making	a	File	Object	
• Simplest	constructor	takes	full	file	name	
(including	path)	
Ø If	don’t	supply	path,	Java	assumes	current	directory	
(.)	

Ø Creates	a	File object	represen-ng	a	file	named	
“chicken.data”	in	the	current	directory	

Ø Does	not	create	a	file	with	this	name	on	disk	
	

Oct	3,	2016	 Sprenkle	-	CSCI209	 25	

File f1 = new File("chicken.data");

Oct	3,	2016	 Sprenkle	-	CSCI209	 26	

Files,	Directories,	and	Useful	Methods	
• A	File object	can	represent	a	file	or	a	
directory	
Ø Directories	are	special	files	in	most	modern	
opera-ng	systems		

• Use	isDirectory()	and/or	isFile()	for	
type	of	file	File	object	represents	

• Use exists()	method	
Ø Determines	if	a	file	exists	on	the	disk	

9/30/16	

14	

Oct	3,	2016	 Sprenkle	-	CSCI209	 27	

More	File	Constructors	
• String	for	the	path,	String	for	filename	

• File	for	directory,	String	for	filename	

File f2 = new File(
"/csdept/local/courses/cs209/handouts",
"chicken.data");

File dir = new File(
"/csdept/local/courses/cs209/handouts");

File f4 = new File(dir, "chicken.data");

Oct	3,	2016	 Sprenkle	-	CSCI209	 28	

“Break”	any	of	Java’s	Principles?	

9/30/16	

15	

Oct	3,	2016	 Sprenkle	-	CSCI209	 29	

java.io.File Class	
• 25+	methods	

Ø Manipulate	files	and	directories	
Ø Crea-ng	and	removing	directories	
Ø Making,	renaming,	and	dele-ng	files	
Ø Informa-on	about	file	(size,	last	modified)	
Ø Crea-ng	temporary	files	
Ø …	

• See	online	API	documenta-on	

FileTest.java

SCANNER	
java.u-l.	

Oct	3,	2016	 Sprenkle	-	CSCI209	 30	

9/30/16	

16	

Oct	3,	2016	 Sprenkle	-	CSCI209	 31	

java.util.Scanner
• New(er)	class	for	handling	input	

Ø Since	Java	1.5	
• Many	constructors	

Ø Read	from	file,	input	stream,	string	…	

• Many	methods	
Ø nextXXXX (int,	long,	line)	
Ø Skipping	pamerns,	matching	pamerns,	etc.	

Scanner sc = new Scanner(System.in);

Scanners	
• Breaks	its	input	into	tokens	using	a	delimiter	pamern,	
which	matches	whitespace	

• Converts	resul-ng	tokens	into	values	of	different	
types	using	nextXXX()		

• Can	change	token	delimiter	from	default	of	
whitespace	

• Assumes	numbers	are	input	as	decimal	
Ø Can	specify	a	different	radix		

Oct	3,	2016	 Sprenkle	-	CSCI209	 32	

What is “delimiter pattern”?
What is “whitespace”?

9/30/16	

17	

Oct	3,	2016	 Sprenkle	-	CSCI209	 33	

Using	Scanners	
• Use	nextXXX() to	read	from	it…	

long tempLong;

// create the scanner for the console
Scanner sc = new Scanner(System.in);

// read in an integer and a String
int i = sc.nextInt();
String restOfLine = sc.nextLine();

// read in a bunch of long integers
while (sc.hasNextLong()) {

tempLong = sc.nextLong();
}

Using	Scanner	

Oct	3,	2016	 Sprenkle	-	CSCI209	 34	

public static void main(String[] args) {

// open the Scanner on the console input, System.in
Scanner scan = new Scanner(System.in);

 scan.useDelimiter("\n"); // breaks up by lines, useful for
 // console I/O

System.out.print("Please enter the width of a rectangle: ");
int width = scan.nextInt();

System.out.print("Please enter the height of a rectangle: ");
int length = scan.nextInt();

System.out
.println("The area of your square is " + length * width +

".");
} ConsoleUsingScannerDemo.java

Simplified version of online example

9/30/16	

18	

Output	

Oct	3,	2016	 Sprenkle	-	CSCI209	 35	

This program calculates the area of a rectangle.

Please enter the width of a rectangle (as an integer):
the number is 1
Incorrect input.
Please enter the width of a rectangle (as an integer):
1 2
Incorrect input.
Please enter the width of a rectangle (as an integer):
2
Please enter the height of a rectangle (as an
integer): 3
The area of your rectangle is 6.

Read in as one token

Scanners	&	Excep-ons	
• Scanners	do	not	throw	IOExceptions!	

Ø For	a	simple	console	program,	main()	does	not	have	
to	deal	with	or	throw	IOExceptions	

Ø Required	with	BufferedReader/
InputStreamReader combina-on	

• Throws	InputMismatchException	when	
token	doesn’t	match	pamern	for	expected	type	
Ø e.g.,	nextLong()	called	with	next	token	“AAA”	
Ø RuntimeException	(no	catching	required)	

Oct	3,	2016	 Sprenkle	-	CSCI209	 36	

How do you prevent such errors?

9/30/16	

19	

Console	class	
• Get	a	Console	object	using	
System.console()

• Has some useful methods for requesting
passwords

•  Issue: does not work through an IDE

Oct	3,	2016	 Sprenkle	-	CSCI209	 37	

ConsoleUsingConsoleDemo.java

STREAMS	

Oct	3,	2016	 Sprenkle	-	CSCI209	 38	

9/30/16	

20	

Oct	3,	2016	 Sprenkle	-	CSCI209	 39	

Streams	
• Java	handles	input/output	using	streams,	which	
are	sequences	of	bytes	

input stream: an object from which we can
read a sequence of bytes
abstract class: java.io.InputStream

Oct	3,	2016	 Sprenkle	-	CSCI209	 40	

Streams	
• Java	handles	input/output	using	streams,	which	
are	sequences	of	bytes	

	

output stream: an object to which we can write a
sequence of bytes
abstract class: java.io.OutputStream

9/30/16	

21	

Java	Streams	
• MANY	(80+)	types	of	Java	streams	
• In	java.io package	
• Why	stream	abstrac-on?	

Ø Informa-on	stored	in	different	sources	is	accessed	in	
essen-ally	the	same	way	
• Example	sources:	file,	on	a	web	server	across	the	
network,	string	

Ø Allows	same	methods	to	read	or	write	data,	
regardless	of	its	source	
• Create	an	InputStream	or	OutputStream	of	the	
appropriate	type	

Oct	3,	2016	 Sprenkle	-	CSCI209	 41	

Oct	3,	2016	 Sprenkle	-	CSCI209	 42	

java.io Classes	Overview	
• Two	types	of	stream	classes,	based	on	datatype:	
Byte,	Text	

• Abstract	base	classes	for	binary	data:	

• Abstract	base	classes	for	text	data:	

InputStream OutputStream

Reader Writer

9/30/16	

22	

Oct	3,	2016	 Sprenkle	-	CSCI209	 43	

Byte	Streams	

Abstract	Base	Classes	

Shaded: Read to/write from data sinks
White: Does some processing

•  For binary data
•  In java.io package

Oct	3,	2016	 Sprenkle	-	CSCI209	 44	

Character	Streams	

Abstract	Base	Classes	

Shaded: Read to/write from data sinks
White: Does some processing

• For Text
• In java.io package
• Handle any character in

Unicode set

9/30/16	

23	

Oct	3,	2016	 Sprenkle	-	CSCI209	 45	

Console	I/O	
• Output:	

Ø System.out	is	a	PrintStream object	
• Input	

Ø System.in is	an	InputStream object
Ø Throws	excep-ons	if	format	of	input	data	is	not	
correct	
• Handle	in	try/catch

Opening	&	Closing	Streams	
• Streams	are	automa/cally	opened	when	
constructed	

• Close	a	stream	by	calling	its	close() method	
Ø Close	a	stream	as	soon	as	object	is	done	with	it	
Ø Free	up	system	resources	

Oct	3,	2016	 Sprenkle	-	CSCI209	 46	

9/30/16	

24	

Reading	&	Wri-ng	Bytes	
• Abstract	parent	class:	InputStream		

Ø abstract int read()	
•  reads	one	byte	from	the	stream	and	returns	it	

• Concrete	input	stream	classes	override	read()	to	
provide	appropriate	func-onality	
Ø e.g.,	FileInputStream’s read()	reads	one	
byte	from	a	file	

• Similarly,	OutputStream	class	has	abstract	
write() to	write	a	byte	to	the	stream	

Oct	3,	2016	 Sprenkle	-	CSCI209	 47	

Oct	3,	2016	 Sprenkle	-	CSCI209	 48	

Reading	&	Wri-ng	Bytes	

• read()	and	write()	are	blocking	opera-ons	
Ø If	a	byte	cannot	be	read	from	the	stream,	the	method	
waits	(does	not	return)	un-l	a	byte	is	read	

• available()	:	get	the	number	of	bytes	that	are	
available	for	reading	

• Example	use:		

int bytesAvailable = System.in.available();
if (bytesAvailable > 0)

System.in.read(byteBuffer);

