
10/7/16

1

Objec&ves	
• Java	wrap-up	

Ø Compila&on	benefits	
Ø Comparing	with	Python	

• So?ware	Development	

Oct 10, 2016 Sprenkle - CSCI209 1

COMPARATORS	

Oct 10, 2016 Sprenkle - CSCI209 2

10/7/16

2

Alterna&ve	Sor&ng	
• What	if	object	is	Comparable but	does	not	
sort	the	way	you	want?	
Ø Special	case	

• Don’t	want	to	change	class	
• Don’t	have	access	to	class	

Ø Example:	want	to	sort	strings	so	capital	and	
lowercase	leJers	are	the	same	

• Use	Comparator interface	

Oct 10, 2016 Sprenkle - CSCI209 3

Comparator<T> Interface	
•  Declares two methods:

Ø int compare(T o1, T o2)
•  Compare two objects and return a value as if we called
o1.compareTo(o2)

Ø boolean equals(Object other)
•  Check if this Comparator equals other

•  Overloaded versions of sort in Arrays and
Collections
Ø Arrays: void sort(Object[] array,
Comparator c)

Ø Collections: void sort(List list,
Comparator c)

Oct 10, 2016 Sprenkle - CSCI209 4

EmployeeNameComparator.java

Have default
from Object

10/7/16

3

COMPILATION	

Oct 10, 2016 Sprenkle - CSCI209 5

Python	Interpreter	
1.  Validates	Python	programming	language	expression(s)	

•  Enforces	Python	syntax	rules	
•  Reports	syntax	errors	

2.  Executes	expression(s)	

Oct 10, 2016 Sprenkle - CSCI209 6

Interpreter
(python)

Python
expression

Output Executable
bytecode

Only if no
syntax errors

10/7/16

4

Compiler
(javac)

Java	Compiler	

• Lexical	analysis,	parsing,	seman&c	analysis,	code	
genera*on,	and	code	op*miza*on	

• Code	op&miza&on:	dead	code	eliminator,	inline	
expansion,	constant	propaga&on,	…	

Oct 10, 2016 Sprenkle - CSCI209 7

Java
file

Java
class

Source code Executable code

Compiling	
•  Translates	high-level	programming	language	to	machine	
code	or	byte	code	
Ø  Java:	.java	à	.class	==	bytecode	

•  Compiler	op&miza&on	techniques	
Ø Generate	efficient	bytecode/machine	code	
Ø  Examples:	get	rid	of	unused	local	variables,	transform	loops,	

inline	method	calls	
Ø  In	Java:	sta&c	typing	for	addi&onal	gains	

•  Can	execute	generated	code	mul&ple	&mes	
Ø  Performance	gain	
Ø  Interpreted	à	have	to	re-verify	the	code	each	&me	executed	

Oct 10, 2016 Sprenkle - CSCI209 8

10/7/16

5

LANGUAGE	COMPARISON	

Oct 10, 2016 Sprenkle - CSCI209 9

Language	Comparison	

Java	 Python	

Oct 10, 2016 Sprenkle - CSCI209 10

10/7/16

6

Rest	of	the	semester	
• Shi?	from	learning	Java,	specifically,	to	learning	
how	to	develop	so?ware	(abstractly)	with	Java	as	
our	implementa&on/example	

• Why	Java?	
Ø Popular	language	
Ø Many	frameworks	and	tools	for	Java	
Ø Java’s	structure	allows	for	strict	adherence	to	design	
techniques	

• Just	a	start	
Ø You’ll	need	to	con&nue	learning	more	“on	the	street”	

Oct 10, 2016 Sprenkle - CSCI209 11

SOFTWARE	LIFE	CYCLE	

Oct 10, 2016 Sprenkle - CSCI209 12

10/7/16

7

Tradi&onal	So?ware	Engineering	
Process:	Waterfall	Model	

Oct 10, 2016 Sprenkle - CSCI209 13

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

Validate at each step
Goal: A stage is 100%
complete before moving to
next step

Feedback	in	Waterfall	Model	

Oct 10, 2016 Sprenkle - CSCI209 14

• Problems may be revealed
in later stages

• What happens if problems
aren’t revealed until
Acceptance?

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

10/7/16

8

Itera&ve	Design	

Oct 10, 2016 Sprenkle - CSCI209 15

Design

Evaluate Implement

Get feedback
from users/
clients

Spiral	Model	
•  Idea:	smaller	prototypes	
to	test/fix/throw	away	
Ø  Finding	problems	early	

costs	less	
•  In	general…	

Ø  Break	func&onality	into	
smaller	pieces	

Ø  Implement	most	
depended-on	or	highest-
priority	features	first		

Oct 10, 2016 Sprenkle - CSCI209 16

Design

ImplementEvaluate

Prototypes

Radial dimension: cost[Boehm 86]

Consistent with
agile development

10/7/16

9

Prototypes	
• Purpose/Dimensions	

Ø Func&onality	
Ø  Interac&on	
Ø  Implementa&on	

• Fidelity:		
Ø Low:	omits	details	
Ø High:	closer	to	finished	project	
Ø Mul&-dimensional	

•  Breadth:	%	of	features	covered	
Ø Only	enough	features	for	certain	tasks	

• Depth:	degree	of	func&onality	
Ø Limited	choices,	canned	responses,	no	error	handling	

Oct 10, 2016 Sprenkle - CSCI209 17

From Nielsen, �
Usability Engineering

Low	Fidelity	
Prototypes	
• Media:	Paper	
• Examples:	storyboard,	
sketches,	flipbook,	
flow	diagram	

Oct 10, 2016 Sprenkle - CSCI209 18

10/7/16

10

High	Fidelity	Prototypes	
• Media:	Flash,	HTML	(non-interac&ve),	
PowerPoint,	Video	

• Examples:	Mockups,	Wizard	of	Oz		

Oct 10, 2016 Sprenkle - CSCI209 19

Virtual Peer for
Autistic Children

http://www.articulab.justinecassell.com/projects/samautism/index.html

How	to	Implement	an	Effec&ve	Solu&on	
• Understand	the	problem	(interact	with	people)	
• Understand	external	constraints	(interact	with	
people)	

• Design	an	effec&ve	solu&on	to	the	problem	
• While	designing	the	solu&on,	design	some	tests	
to	verify	that	the	problem	is	solved	(and	remains	
solved)	

• Code	the	effec&ve	solu&on	to	the	problem	
• Teach	other	team	members	about	your	solu&on	
to	the	problem	(interact	with	people)	

Oct 10, 2016 Sprenkle - CSCI209 20

10/7/16

11

Spiral	Model	Steps	
• Design	a	{method,	class,	package}	
•  Implement	the	{method,	class,	package}	
• Test	the	{method,	class,	package}	
• Fix	the	{method,	class,	package}	
• Deploy	the	{method,	class,	package}	
• Get	feedback	

Ø Probably	will	require	modifica&ons	to	design	
Ø May	even	need	to	rollback	a	previous	version	

• Repeat	
Oct 10, 2016 Sprenkle - CSCI209 21

