Objectives

Java wrap-up
» Compilation benefits
» Comparing with Python

Software Development

Oct 10, 2016 Sprenkle - CSCI209

COMPARATORS

Oct 10, 2016 Sprenkle - CSCI209

Alternative Sorting

What if object is Comparable but does not
sort the way you want?
» Special case
Don’t want to change class
Don’t have access to class
» Example: want to sort strings so capital and
lowercase letters are the same

Use Comparator interface

Oct 10, 2016 Sprenkle - CSCI209 3

Comparator<T> Interface

Declares two methods:
» 1int compare(T ol, T 02)

Compare two objects and return a value as if we called
ol.compareTo(o2)

> boolean equals(Object other) e—
Check if this Comparator equals other
Overloaded versions of sort in Arrays and
Collections

» Arrays: void sort(Object[] array,
Comparator c)

> Collections: void sort(List list,
Comparator c)

Have default
from Object

EmployeeNameComparator. java
Oct 10, 2016 Sprenkle - CSCI209 4

COMPILATION

Oct 10, 2016 Sprenkle - CSCI209 5

Python Interpreter

Validates Python programming language expression(s)
Enforces Python syntax rules

Reports syntax errors

Executes expression(s)

Python Interpreter
EXPIESSION e © yt[r)mn)
) Only if no
/\ syntax errors
Output Executable
bytecode

Oct 10, 2016 Sprenkle - CSCI209 6

Java Compiler

Java Compiler Java
file © (javac)] class
Source code Executable code

Lexical analysis, parsing, semantic analysis, code
generation, and code optimization

Code optimization: dead code eliminator, inline
expansion, constant propagation, ...

Oct 10, 2016 Sprenkle - CSCI209 7

Compiling

Translates high-level programming language to machine
code or byte code
Java: .java = .class == bytecode

Compiler optimization techniques
Generate efficient bytecode/machine code

Examples: get rid of unused local variables, transform loops,
inline method calls

In Java: static typing for additional gains

Can execute generated code multiple times
Performance gain
Interpreted = have to re-verify the code each time executed

Oct 10, 2016 Sprenkle - CSCI209 8

LANGUAGE COMPARISON

Oct 10, 2016 Sprenkle - CSCI209

Language Comparison

Java Python

Oct 10, 2016 Sprenkle - CSCI209

10

Rest of the semester

Shift from learning Java, specifically, to learning
how to develop software (abstractly) with Java as
our implementation/example

Why Java?
» Popular language
» Many frameworks and tools for Java

» Java’s structure allows for strict adherence to design
techniques

Just a start
» You'll need to continue learning more “on the street”

Oct 10, 2016 Sprenkle - CSCI209 1"

SOFTWARE LIFE CYCLE

Oct 10, 2016 Sprenkle - CSCI209 12

Traditional Software Engineering
Process: Waterfall Model

[Requirements]\
[Design J\

[Implementation

Integration J\
Validate at each step

Goal: A stage is 100% [Acceptance]\

complete before moving to e

next step Maintenance
Oct 10, 2016 Sprenkle - CSCI209 13

Feedback in Waterfall Model

[Requirements]\
A
\'[Design]\
1
Implementation]\
A
\ Integration
* Problems may be revealed

. 4
in later stages - \‘[e
* What happens if problems 3
aren’t revealed until \(Release/
Acceptance!? Maintenance

Oct 10, 2016 Sprenkle - CSCI209 14

Iterative Design
Design
Get feedback
from users/
clients
Evaluate Implement
Oct 10, 2016 Sprenkle - CSCI209 15
Consistent with
Spiral Model agile development

Design

Idea: smaller prototypes
to test/fix/throw away
» Finding problems early
costs less
In general...

» Break functionality into
smaller pieces

» Implement most “

depended-on or highest- p
priority features first rototypes

Evaluate Implement

[Boehm 86] Radial dimension: cost

Oct 10, 2016 Sprenkle - CSCI209 16

Prototypes

Purpose/Dimensions
Functionality

. horizontal
Interaction ""”‘ end | Rt o
. vertical
Implementation _ prototype scenario

back

Fldellty —— diiferent features ——
Low: omits details From Nielsen,
High: closer to finished project Usability Engineering

Multi-dimensional
Breadth: % of features covered
» Only enough features for certain tasks
Depth: degree of functionality
» Limited choices, canned responses, no error handling

Oct 10, 2016 Sprenkle - CSCI209 17

Low Fidelity e e e
Prototypes | B

Media: Paper

Examples: storyboard,
sketches, flipbook,
flow diagram

Oct 10, 2016 Sprenkle - CSCI209 18

High Fidelity Prototypes

Media: Flash, HTML (non-interactive),
PowerPoint, Video

Examples: Mockups, Wizard of Oz

Virtual Peer for
Autistic Children

http://www.articulab.justinecassell.com/projects/samautism/index.html

How to Implement an Effective Solution

Understand the problem (interact with people)
Understand external constraints (interact with
people)

Design an effective solution to the problem

While designing the solution, design some tests
to verify that the problem is solved (and remains
solved)

Code the effective solution to the problem
Teach other team members about your solution
to the problem (interact with people)

Oct 10, 2016 Sprenkle - CSCI209 20

Spiral Model Steps

Design a {method, class, package}
Implement the {method, class, package}
Test the {method, class, package}

Fix the {method, class, package}

Deploy the {method, class, package}
Get feedback

Probably will require modifications to design
May even need to rollback a previous version

Repeat

Oct 10, 2016 Sprenkle - CSCI209

21

