
10/12/16

1

Objec&ves	
• Tes&ng	

Oct	12,	2016	 Sprenkle	-	CSCI209	 1	

Review:	SoBware	Development	
• From	Monday	

Oct	12,	2016	 Sprenkle	-	CSCI209	 2	

10/12/16

2

CLASSPATH	

Oct	12,	2016	 Sprenkle	-	CSCI209	 3	

Classpath	
• Tells	the	compiler	or	JVM	where	to	look	for	user-
defined	classes	and	packages	
Ø OBen	when	using	third-party	libraries	

• Similar	to	PYTHONPATH

• Typically	know	it	needs	to	be	set	when	there	are	
class	not	found	error	messages	

Oct	12,	2016	 Sprenkle	-	CSCI209	 4	

10/12/16

3

SeRng	the	Classpath	
• Can	specify	classpath	in	command	line	

• Can	specify	the	classpath	environment	variable	
Ø Edit	your	.bash_profile	OR	
Ø Set	in	terminal	

•  In	Eclipse,	you	can	“Configure	Build	Path”	for	a	
project	

Oct	12,	2016	 Sprenkle	-	CSCI209	 5	

javac -cp path/to/myjavaclasses MyClass.java
java –cp path/to/myjavaclasses MyClass

CLASSPATH=$CLASSPATH:path/to/myjavaclasses
echo $CLASSPATH Current value of CLASSPATH

SOFTWARE	TESTING	PROCESS	

Oct	12,	2016	 Sprenkle	-	CSCI209	 6	

10/12/16

4

Why	Test	Programs?	
• Consider	an	online	bookstore	

Oct	12,	2016	 Sprenkle	-	CSCI209	 7	

Bug!
Customer
sees bug

Site Goes Down
for Maintenance

Customers choose
a competitor’s site

Lose customers’
 confidence

(a.k.a., a fault)

MicrosoB																														Tes&ng	
• Beyond	their	internal	tes&ng	…	

Ø 5	million	people	beta	tested		
Ø 60+	years	of	performance	tes&ng	
Ø 1	Billion+	Office	2007	sessions	

• S&ll,	users	found	correctness,	stability,	
robustness,	and	security	bugs	

Oct	12,	2016	 Sprenkle	-	CSCI209	 8	

10/12/16

5

Type	1	Bugs:	Compile-Time	

• Syntax	errors	
Ø Missing	semicolon,	parentheses		

• Compiler	no&fies	of	error	
• Cheap,	easy	to	fix	

Oct	12,	2016	 Sprenkle	-	CSCI209	 9	

Type	2	Bugs:	Run-Time	

• Usually	logic	errors	
• Expensive	to	locate,	fix	

Oct	12,	2016	 Sprenkle	-	CSCI209	 10	

10/12/16

6

Aside:	Objec&ons	to	“Bug”	Terminology	
• “Bug”	

Ø Sounds	like	it’s	just	an	
annoyance	
• Can	simply	swat	away	

Ø Minimizes	poten&al	problems	
Ø Hides	programmer’s	
responsibility	

• Alterna&ve	terms	
Ø Defect	
Ø Fault	

Oct	12,	2016	 Sprenkle	-	CSCI209	 11	

SoBware	Tes&ng	Process	

• Test	Suite:	set	of	test	cases	

Oct	12,	2016	 Sprenkle	-	CSCI209	 12	

Input Program	 Output

Test Case

Program
Under Test

Expected	
Output	 ?

pass or fail

10/12/16

7

SoBware	Tes&ng	Process	

• Tester	plays	devil’s	advocate	
Ø Hopes	to	reveal	problems	in	the	program	using	
“good”	test	cases		

Ø Beher	tester	finds	than	a	customer!	

Oct	12,	2016	 Sprenkle	-	CSCI209	 13	

Input Program	 Output

How is testing different from debugging?

How	Would	You	Test	a	Calculator	
Program?	

• What	test	cases:	input	and	expected	output?	

Oct	12,	2016	 Sprenkle	-	CSCI209	 14	

Numerical
Answer

adds, subtracts,
multiplies, divides

Operands,
operators,
expected

output

Input Calculator	
Program	 Output

10/12/16

8

Example	Test	Cases	for	Calculator	Program	

•  Basic	Func&onality	
Ø Addi&on	
Ø  Subtrac&on	
Ø Mul&plica&on	
Ø Division	
Ø Order	of	opera&ons	

•  Invalid	Input	
Ø  Lehers,	not-opera&on	

characters	(&,$,	…)	

•  “Tricky”	Cases	
Ø Divide	by	0	
Ø Nega&ve	Numbers	
Ø  Long	sequences	of	

operands,	operators	
Ø  VERY	large,	VERY	small	

numbers	

Oct	12,	2016	 Sprenkle	-	CSCI209	 15	

Types	of	Tes&ng	
(Non-Exhaus&ve)		
•  Black-box	tes&ng	

• White-box	tes&ng	

•  Non-func&onal	tes&ng	

•  Acceptance	tes&ng	

Oct	12,	2016	 Sprenkle	-	CSCI209	 16	

Ideas or definitions of any of these?

10/12/16

9

Types	of	Tes&ng	
(Non-Exhaus&ve)		
•  Black-box	tes&ng	

Ø  Test	func%onality	(e.g.,	the	
calculator)	

Ø No	knowledge	of	the	code	
Ø  Examples	of	tes&ng:	

boundary	values	

• White-box	tes&ng	
Ø Have	access	to	code	
Ø Goal:	execute	all	code	

•  Non-func&onal	tes&ng	
Ø  Performance	tes&ng	
Ø Usability	tes&ng	(HCI)	
Ø  Security	tes&ng	
Ø  Interna&onaliza&on,	

localiza&on	

•  Acceptance	tes&ng	
Ø  Customer	tests	to	decide	

if	accepts	product	

Oct	12,	2016	 Sprenkle	-	CSCI209	 17	

Levels	of	Tes&ng	
• Unit	

Ø Tests	minimal	soBware	component,	in	isola&on	
Ø For	us,	Class-level	tes&ng	
Ø Web:	Web	pages	(Hhp	Request)	

•  Integra&on	
Ø Tests	interfaces	&	interac&on	of	classes	

• System	
Ø Tests	that	completely	integrated	system	meets	
requirements	

• System	Integra&on	
Ø Test	system	works	with	other	systems,	e.g.,	third-
party	systems	

Oct	12,	2016	 Sprenkle	-	CSCI209	 18	

C
ost increases

10/12/16

10

UNIT	TESTING	

Oct	12,	2016	 Sprenkle	-	CSCI209	 19	

Why	Unit	Test?	
• Verify	code	works	as	intended	in	isola&on	
• Find	defects	early	in	development	

Ø Easier	to	test	small	pieces	
Ø Less	cost	than	at	later	stages	

Oct	12,	2016	 Sprenkle	-	CSCI209	 20	

10/12/16

11

Why	Unit	Test?	
• Verify	code	works	as	intended	in	isola&on	
• Find	defects	early	in	development	

Ø Easier	to	test	small	pieces	
Ø Less	cost	than	at	later	stages	

• As	applica&on	evolves,	new	code	is	more	likely	to	
break	exis&ng	code	
Ø Suite	of	(small)	test	cases	to	run	aBer	code	changes	
Ø Also	called	regression	tes&ng	

Oct	12,	2016	 Sprenkle	-	CSCI209	 21	

Some	Approaches	to	Tes&ng	Methods	
• Typical	case	

Ø Test	typical	values	of	input/parameters	
• Boundary	condi&ons	

Ø Test	at	boundaries	of	input/parameters	
Ø Many	faults	live	“in	corners”	

• Parameter	valida&on	
Ø Verify	that	parameter	and	object	bounds	are	
documented	and	checked	

Ø Example:	pre-condi&on	that	parameter	isn’t	null	

Oct	12,	2016	 Sprenkle	-	CSCI209	 22	

➥  All black-box testing approaches

10/12/16

12

Another	Use	of	Unit	Tes&ng:	
	 	 	Test-Driven	Development	

• A	development	style,	evolved	from	Extreme	
Programming	

•  Idea:	write	tests	first	without	code	bias	
• The	Process:	

1.  Write	tests	that	code/new	func&onality	should	pass	
• Like	a	specifica&on	for	the	code	(pre/post	condi&ons)	
• All	tests	will	ini&ally	fail	

2.  Write	the	code	and	verify	that	it	passes	test	cases	
• Know	you’re	done	coding	when	you	pass	all	tests	

Oct	12,	2016	 Sprenkle	-	CSCI209	 23	

What assumption does this make?

How do you know you’re “done” in
traditional development?

SoBware	Tes&ng	Issues	
• How	should	you	test?		How	oBen?	

Ø Code	may	change	frequently	
Ø Code	may	depend	on	others’	code	
Ø A	lot	of	code	to	validate	

• How	do	you	know	that	an	output	is	correct?	
Ø Complex	output	
Ø Human	judgment?			

• What	caused	a	code	failure?	

Oct	12,	2016	 Sprenkle	-	CSCI209	 24	

➥  Need a systematic, automated,
repeatable approach

10/12/16

13

Characteris&cs	of	Good	Unit	Tes&ng	

• AutomaAc	
• Thorough	
• Repeatable	
• Independent	

Oct	12,	2016	 Sprenkle	-	CSCI209	 25	

Why are these characteristics of
good (unit) testing?

JUNIT	

Oct	12,	2016	 Sprenkle	-	CSCI209	 26	

10/12/16

14

JUnit	Framework	
• A	framework	for	unit	tes&ng	Java	programs	

Ø Supported	by	Eclipse	and	other	IDEs	
Ø Developed	by	Erich	Gamma	and	Kent	Beck	

• Func&onality	
Ø Write	tests	

•  Validate	output,	automa&cally	
Ø Automate	execu&on	of	test	suites	
Ø Display	pass/fail	results	of	test	execu&on	

•  Stack	trace	where	fails	
Ø Organize	tests,	separate	from	code	

• But,	you	s&ll	need	to	come	up	with	the	
tests!	

Oct	12,	2016	 Sprenkle	-	CSCI209	 27	

Kent Beck

Erich Gamma

Tes&ng	with	JUnit	
• Typical	organiza&on:	

Ø Set	of	tes&ng	classes	
Ø Tes&ng	classes	packaged	together	in	a	tests
package	
• Separate	package	from	code	tes&ng	

• A	test	class	typically		
Ø Focuses	on	a	specific	class	
Ø Contains	methods,	each	of	which	represents	another	
test	of	the	class	

Oct	12,	2016	 Sprenkle	-	CSCI209	 28	

tests
CDTest
DVDTest
MediaItemTest

10/12/16

15

Structure	of	a	JUnit	Test	
1.  Set	up	the	test	case	(op&onal)	

Ø  Example:	Crea&ng	objects	

2.  Exercise	the	code	under	test	
3.  Verify	the	correctness	of	the	results	
4.  Teardown	(op&onal)	

Ø Example:	reclaim	created	objects	

Oct	12,	2016	 Sprenkle	-	CSCI209	 29	

Annota&ons	
• Tes&ng	in	JUnit	4:	uses	annotaAons		
• Provide	data	about	a	program	that	is	not	part	of	
program	itself		

• Have	no	direct	effect	on	opera&on	of	the	code		
• Example	uses:		

Ø @Override:	method	declara&on	is	intended	to	
override	a	method	declara&on	in	parent	class	
•  If	method	does	not	override	parent	class	method,	
compiler	generates	error	message	

Ø Informa&on	for	the	compiler	to	suppress	warnings	
(@SupressWarnings)	

	Oct	12,	2016	 Sprenkle	-	CSCI209	 30	

10/12/16

16

Tests	are	Methods	
• Mark	your	tes&ng	method	with	@Test

Ø From org.junit.Test

• Conven&on:	Method	name	describes	what	
you’re	tes&ng	

Oct	12,	2016	 Sprenkle	-	CSCI209	 31	

public class CalculatorTest {

@Test
public void addTest() {

…
}

} 	

A method to test the
“add” functionality

Class for testing the
Calculator class

Assert	Methods	
• Variety	of	assert	methods	available	
•  If	fail,	throw	an	excep&on	
• Otherwise,	test	keeps	execu&ng	
• All	static void	
• Example:	
 assertEquals(Object expected, Object actual)	
	

Oct	12,	2016	 Sprenkle	-	CSCI209	 32	

@Test
public void addTest() {

…
assertEquals(4, calculator.add(3, 1));

} 	

10/12/16

17

Assert	Methods	
• To	use	asserts,	need	sta%c	import:	

Ø static allows	us	to	not	have	to	use	classname

• More	examples	
Ø assertTrue(boolean condition)
Ø assertSame(Object expected, Object actual)

•  Refer to same object
Ø assertEquals(double expected, double
actual, double delta)

Oct	12,	2016	 Sprenkle	-	CSCI209	 33	

import static org.junit.Assert.*;

Example	Uses	of	Assert	Methods	

Oct	12,	2016	 Sprenkle	-	CSCI209	 34	

@Test
public void testEmptyCollection() {

Collection collection = new ArrayList();
 assertTrue(collection.isEmpty());
}

@Test
public void testPI() {

final double ERROR_TOLERANCE = .01;
assertEquals(Math.PI, 3.14, ERROR_TOLERANCE);

}

Will fail if ERROR_TOLERANCE = .001

assertEquals(double expected, double actual, double delta)

10/12/16

18

Set	Up/Tear	Down	
• May	want	methods	to	set	up	objects	for	every	
test	in	the	class	
Ø Called	fixtures	
Ø If	have	mul&ple,	no	guarantees	for	order	executed	

Oct	12,	2016	 Sprenkle	-	CSCI209	 35	

@Before
public void prepareTestData() { ... }

@Before
public void setupMocks() { ... }

@After
public void cleanupTestData() { ... }	

Executed before
each test method

Example	Set	Up	Method	

Oct	12,	2016	 Sprenkle	-	CSCI209	 36	

@Before Executed before each test method
Can use testCD in test methods

private CD testCD;

@Before
public void setUp() {

testCD = new CD("CD title", 100, 1997,
"CD Artist", 11);

}

10/12/16

19

Expec&ng	an	Excep&on	
• Handling	Error	Cases	

Ø Some&mes	an	excep&on	is	the	expected	result	

Oct	12,	2016	 Sprenkle	-	CSCI209	 37	

@Test(expected=IndexOutOfBoundsException.class)
public void testIndexOutOfBoundsException() {
 ArrayList emptyList = new ArrayList();
 Object o = emptyList.get(0);
}

Add an “expected” attribute:

Test case passes iff exception thrown

Set	Up/Tear	Down	For	Class	
• May	want	methods	to	set	up	objects	for	set	of	
tests	
Ø Executed	once	before	any	test	in	class	executes	

Oct	12,	2016	 Sprenkle	-	CSCI209	 38	

@BeforeClass
public static void
setupDatabaseConnection() { ... }

@AfterClass
public static void
teardownDatabaseConnection() { ... }	

10/12/16

20

JUNIT	IN	ECLIPSE	

Oct	12,	2016	 Sprenkle	-	CSCI209	 39	

Using	JUnit	in	Eclipse	
• Eclipse	can	help	make	our	job	easier	

Ø Automa&cally	execute	tests	(i.e.,	methods)	
Ø We	can	focus	on	coming	up	with	tests	

Oct	12,	2016	 Sprenkle	-	CSCI209	 40	

10/12/16

21

Using	JUnit	in	Eclipse	
•  In	Eclipse,	go	to	your	MediaItem project	
• Create	a	new	JUnit	Test	Case	(under	Java)	

Ø Use	JUnit	4	
• Add	junit	to	build	path	

Ø Put	in	package	media.tests
Ø Name:	DVDTest
Ø Choose	to	test	DVD class

•  Select setUp and tearDown
• Select	methods	to	test	

• Run	the	class	as	a	JUnit	Test	Case	
Oct	12,	2016	 Sprenkle	-	CSCI209	 41	

Example	
• Test	method	that	gets	the	length	of	the	DVD

Ø Revise:	Add	code	to	setUp method	that	creates	a	
DVD	

• Notes	
Ø Replaying	all	the	test	cases:	right	click	on	package	
Ø FastView	vs	Detached	
Ø Hint:	CTL-Spacebar	to	get	auto-complete	op&ons	

Oct	12,	2016	 Sprenkle	-	CSCI209	 42	

10/12/16

22

Unit	Tes&ng	&	JUnit	Summary	
• Unit	Tes&ng:	tes&ng	smallest	component	of	your	
code	
Ø For	us:	class	and	its	methods	

• JUnit	provides	framework	to	write	test	cases	and	
run	test	cases	automa&cally	
Ø Easy	to	run	again	aBer	code	changes	

• JUnit	Resources	available	from	Course	Page’s	
“Resource”	Link,	under	Java	
Ø API	
Ø Tutorials	

Oct	12,	2016	 Sprenkle	-	CSCI209	 43	

