Objectives

Testing

Oct 12, 2016 Sprenkle - CSCI209

Review: Software Development

From Monday

Oct 12, 2016 Sprenkle - CSCI209

CLASSPATH

Oct 12, 2016 Sprenkle - CSCI209 3

Classpath

Tells the compiler or JVM where to look for user-
defined classes and packages

Often when using third-party libraries

Similar to PYTHONPATH

Typically know it needs to be set when there are
class not found error messages

Oct 12, 2016 Sprenkle - CSCI209 4

Setting the Classpath

Can specify classpath in command line

javac -cp path/to/myjavaclasses MyClass.java
java —-cp path/to/myjavaclasses MyClass

Can specify the classpath environment variable
» Edit your .bash_profile OR
» Set in terminal

CLASSPATH=$CLASSPATH:path/to/myjavaclasses
echo $CLASSPATH ~~ Current value of CLASSPATH

In Eclipse, you can “Configure Build Path” for a
project

Oct 12, 2016 Sprenkle - CSCI209

SOFTWARE TESTING PROCESS

Oct 12, 2016 Sprenkle - CSCI209

Why Test Programs?

Consider an online bookstore

Site Goes Down
for Maintenance

Customer

Bug! I sees bug
(a-k-a., a fault) l l

Customers choose Lose customers’
a competitor’s site confidence

Oct 12, 2016 Sprenkle - CSCI209

: My .. . :
Microsoft & T Windows Vista Testing

Beyond their internal testing ...
5 million people beta tested
60+ years of performance testing
1 Billion+ Office 2007 sessions

Still, users found correctness, stability,
robustness, and security bugs

Oct 12, 2016 Sprenkle - CSCI209

Type 1 Bugs: Compile-Time

Syntax errors
» Missing semicolon, parentheses

Compiler notifies of error
Cheap, easy to fix

Oct 12, 2016 Sprenkle - CSCI209 9

Type 2 Bugs: Run-Time

Usually logic errors
Expensive to locate, fix

Oct 12, 2016 Sprenkle - CSCI209 10

Aside: Objections to “Bug” Terminology

IlBugH

» Sounds like it’s just an
annoyance

Can simply swat away
» Minimizes potential problems
» Hides programmer’s
responsibility
Alternative terms
» Defect
» Fault

Oct 12, 2016 Sprenkle - CSCI209

11

Software Testing Process

- prowan
Input

Program
Under Test

Test Case

Expected
Output

Test Suite: set of test cases

Oct 12, 2016 Sprenkle - CSCI209

pass or fail

Software Testing Process

S

Tester plays devil’s advocate

» Hopes to reveal problems in the program using
“good” test cases

» Better tester finds than a customer!

How is testing different from debugging!

Oct 12, 2016 Sprenkle - CSCI209 13

How Would You Test a Calculator
Program?

S

Operands, adds, subtracts, Numerical
operators, multiplies, divides Answer
expected

output

What test cases: input and expected output?

Oct 12, 2016 Sprenkle - CSCI209 14

Example Test Cases for Calculator Program

Basic Functionality “Tricky” Cases
» Addition » Divide by 0
» Subtraction » Negative Numbers
» Multiplication » Long sequences of
> Division operands, operators
> Order of operations » VERY large, VERY small
. numbers
Invalid Input
» Letters, not-operation
characters (&,S, ...)
Oct 12, 2016 Sprenkle - CSCI209 15
Types of Testing
(Non-Exhaustive)
Black-box testing Non-functional testing
White-box testing Acceptance testing

Ideas or definitions of any of these!?

Oct 12, 2016 Sprenkle - CSCI209 16

Types of Testing

(Non-Exhaustive)

Black-box testing

» Test functionality (e.g., the
calculator)

» No knowledge of the code

» Examples of testing:
boundary values

White-box testing

» Have access to code
» Goal: execute all code

Oct 12, 2016

Non-functional testing

» Performance testing

» Usability testing (HCI)

» Security testing

» Internationalization,
localization

Acceptance testing

» Customer tests to decide
if accepts product

Sprenkle - CSCI209 17

Levels of Testing
Unit

» Tests minimal software component, in isolation

» For us, Class-level testing

» Web: Web pages (Http Request)

Integration

» Tests interfaces & interaction of classes

System

» Tests that completely integrated system meets

requirements
System Integration

» Test system works with other systems, e.g., third-

party systems

Oct 12, 2016

Sprenkle - CSCI209 18

UNIT TESTING

Oct 12, 2016 Sprenkle - CSCI209 19

Why Unit Test?

Verify code works as intended in isolation

Find defects early in development
Easier to test small pieces
Less cost than at later stages

Oct 12, 2016 Sprenkle - CSCI209 20

Why Unit Test?

Verify code works as intended in isolation

Find defects early in development
Easier to test small pieces
Less cost than at later stages
As application evolves, new code is more likely to
break existing code
Suite of (small) test cases to run after code changes
Also called regression testing

Oct 12, 2016 Sprenkle - CSCI209 21

Some Approaches to Testing Methods

Typical case

Test typical values of input/parameters
Boundary conditions

Test at boundaries of input/parameters

Many faults live “in corners”
Parameter validation

Verify that parameter and object bounds are
documented and checked

Example: pre-condition that parameter isn’t null

w All black-box testing approaches

Oct 12, 2016 Sprenkle - CSCI209 22

Another Use of Unit Testing:
Test-Driven Development

A development style, evolved from Extreme
Programming

Idea: write tests first withotit code hinc

How do you know you're “done” in

The Process: traditional development?

Write tests that code/new functionality should pass
Like a specification for the code (pre/post conditions)
All tests will initially fail

Write the code and verify that it passes test cases
/l(nn\u vnitra dana ~ndi

What assumption does this make?

g when you pass all tests

Oct 12, 2016 Sprenkle - CSCI209 23

Software Testing Issues

How should you test? How often?
Code may change frequently
Code may depend on others’ code
A lot of code to validate

How do you know that an output is correct?
Complex output
Human judgment?

What caused a code failure?

w Need a systematic, automated,
repeatable approach

Sprenkle - CSCI209 24

Oct 12, 2016

Characteristics of Good Unit Testing

Automatic
Thorough
Repeatable
Independent

Why are these characteristics of
good (unit) testing?

Oct 12, 2016 Sprenkle - CSCI209

25

JUNIT

Oct 12, 2016 Sprenkle - CSCI209

26

JUnit Framework

A framework for unit testing Java programs
» Supported by Eclipse and other IDEs
» Developed by Erich Gamma and Kent Beck

Functionality
» Write tests
Validate output, automatically
» Automate execution of test suites

» Display pass/fail results of test execution
Stack trace where fails

» Organize tests, separate from code
But, you still need to come up with the

tests!
Oct 12, 2016 Sprenkle - CSCI209 27
Testing with JUnit tests
L (DTest
Typical organization: DVDTest
» Set of testing classes MedialtemTest

» Testing classes packaged together in a tests
package
Separate package from code testing
A test class typically
» Focuses on a specific class

» Contains methods, each of which represents another
test of the class

Oct 12, 2016 Sprenkle - CSCI209 28

Structure of a JUnit Test

Set up the test case (optional)
Example: Creating objects

Exercise the code under test
Verify the correctness of the results
Teardown (optional)

Example: reclaim created objects

Oct 12, 2016 Sprenkle - CSCI209 29

Annotations

Testing in JUnit 4: uses annotations

Provide data about a program that is not part of
program itself

Have no direct effect on operation of the code

Example uses:

@Override: method declaration is intended to
override a method declaration in parent class

If method does not override parent class method,
compiler generates error message

Information for the compiler to suppress warnings
(@SupressWarnings)

Oct 12, 2016 Sprenkle - CSCI209 30

Tests are Methods

Mark your testing method with @Test
From org.junit.Test

public class CalculatorTest { Class for testing the
Calculator class

@Test
public void addTest() { A method to test the

“add” functionality
}

Convention: Method name describes what
you're testing

Oct 12, 2016 Sprenkle - CSCI209 31

Assert Methods

Variety of assert methods available
If fail, throw an exception
Otherwise, test keeps executing
All static void

Example:
assertEquals(Object expected, Object actyal)

@Test
public void addTest()

assertEquals(4, calculator.add(3, 1));

iiiiiiiiiiiiiiiii

Assert Methods

To use asserts, need static import:

import static org.junit.Assert.*;
static allows us to not have to use classname

More examples
assertTrue(boolean condition)
assertSame(Object expected, Object actual)
Refer to same object

assertEquals(double expected, double
actual, double delta)

Oct 12, 2016 Sprenkle - CSCI209 33

Example Uses of Assert Methods

@Test

public void testEmptyCollection() {
Collection collection = new ArrayList();
assertTrue(collection.isEmpty());

}

assertEquals(double expected, double actual, double delta)

@Test

public void testPI() {
final double ERROR_TOLERANCE = .01;
assertEquals(Math.PI, 3.14, ERROR_TOLERANCE);

¥
Will fail if ERROR_TOLERANCE = .001

Oct 12, 2016 Sprenkle - CSCI209 34

Set Up/Tear Down

May want methods to set up objects for every
test in the class

Called fixtures

If have multiple, no guarantees for order executed

@Before

public void prepareTestData() { ... }

@Before Executed before
public void setupMocks() { ... } each test method
@After

public void cleanupTestData() { ... }

Oct 12, 2016 Sprenkle - CSCI209 35

Example Set Up Method

private CD test(D;

@Before
public void setUp() {
test(CD = new CDC"CD title", 100, 1997,
"CD Artist", 11);

@Before Executed before each test method
Can use test(CD in test methods

Oct 12, 2016 Sprenkle - CSCI209 36

Expecting an Exception

Handling Error Cases

Sometimes an exception is the expected result

Add an “expected” attribute:

@Test(expected=IndexOutOfBoundsException.class)

public void testIndexOutOfBoundsException() {
ArraylList emptylList = new ArraylList();
Object o = emptylList.get(0);

ks

Test case passes iff exception thrown

Oct 12, 2016 Sprenkle - CSCI209 37

Set Up/Tear Down For Class

May want methods to set up objects for set of
tests

Executed once before any test in class executes
@Before(Class

public static void
setupDatabaseConnection() { ... }

@AfterClass
public static void
teardownDatabaseConnection() { ... }

Oct 12, 2016 Sprenkle - CSCI209 38

JUNIT IN ECLIPSE

Oct 12, 2016 Sprenkle - CSCI209 39

Using JUnit in Eclipse

Eclipse can help make our job easier
» Automatically execute tests (i.e., methods)
» We can focus on coming up with tests

Oct 12, 2016 Sprenkle - CSCI209 40

Using JUnit in Eclipse

In Eclipse, go to your Medialtem project

Create a new JUnit Test Case (under Java)
Use JUnit 4
Add junit to build path
Put in package media.tests
Name: DVDTest
Choose to test DVD class
Select setUp and tearDown

Select methods to test

Run the class as a JUnit Test Case

Oct 12, 2016 Sprenkle - CSCI209 41

Example

Test method that gets the length of the DVD

Revise: Add code to setUp method that creates a
DVD

Notes
Replaying all the test cases: right click on package
FastView vs Detached
Hint: CTL-Spacebar to get auto-complete options

Oct 12, 2016 Sprenkle - CSCI209 42

Unit Testing & JUnit Summary

Unit Testing: testing smallest component of your
code

For us: class and its methods
JUnit provides framework to write test cases and
run test cases automatically

Easy to run again after code changes
JUnit Resources available from Course Page’s
“Resource” Link, under Java

API

Tutorials

Oct 12, 2016 Sprenkle - CSCI209 43

