
10/24/16 

1 

Objec&ves	
• Coverage	tools	
• Object-oriented	Design	Principles	

Ø Design	in	the	Small	
Ø DRY	
Ø Single	responsibility	principle	
Ø Shy	
Ø Open-closed	principle	

Oct	26,	2016	 Sprenkle	-	CSCI209	 1	

COVERAGE	TOOLS	

Oct	26,	2016	 Sprenkle	-	CSCI209	 2	



10/24/16 

2 

Coverage	Tools	
• Coverage	is	used	in	prac&ce	
• Don’t	need	to	figure	out	coverage	manually	
• Available	tools	to	calculate	coverage	

Ø Examples	for	Java	programs:	Cobertura,	Clover,	
JCoverage,	Emma	

Ø Measure	statement,	branch/condi&onal,	method	
coverage	

Oct	26,	2016	 Sprenkle	-	CSCI209	 3	

Eclipse	Plugin:	EclEmma	for	Coverage	
• Eclipse	can	be	extended	through	plugins	

Ø Provide	addi&onal	func&onality	

• EclEmma	Plugin	
Ø Records	execu&ng	program’s	(or	JUnit	test	case’s)	
coverage	

Ø Displays	coverage	graphically	

Oct	26,	2016	 Sprenkle	-	CSCI209	 4	



10/24/16 

3 

Installing	Emma	in	Eclipse	
1.  From	your	Eclipse	menu	select	Help	→	Eclipse	

Marketplace.		
2.  Search	for	"EclEmma".		
3.  Hit	Install	for	the	entry	"EclEmma	Java	Code	

Coverage".		
4.  Follow	the	steps	in	the	installa&on	wizard.		

Oct	26,	2016	 Sprenkle	-	CSCI209	 5	

Demonstra&on	
• Execute	test	with	coverage	

Oct	26,	2016	 Sprenkle	-	CSCI209	 6	



10/24/16 

4 

Note:	Coverage	and	Tes&ng	Project	
• You	won’t	be	able	to	leverage	coverage	for	the	
tes&ng	project	
Ø Even	if	you	write	code,	it’s	not	_my_	code.	

• Challenge	of	test-driven	development	(TDD)	
Ø Common	prac&ce	in	industry	
	

Oct	26,	2016	 Sprenkle	-	CSCI209	 7	

OBJECT-ORIENTED	DESIGN	
PRINCIPLES	

Oct	26,	2016	 Sprenkle	-	CSCI209	 8	



10/24/16 

5 

Designing	Systems	

Ø Requirements	change	
Ø Misunderstandings	in	requirements	

• Code	must	be	so2	
Ø Flexible	
Ø Easy	to	change	

• New	or	revised	circumstances	
• New	contexts	

Oct	26,	2016	 Sprenkle	-	CSCI209	 9	

All systems change �
during their life cycle

Designing	Systems	

• Ques&ons	to	consider:	
Ø How	can	we	create	designs	that	are	stable	in	the	face	
of	change?	

Ø How	do	we	know	if	our	designs	aren’t	maintainable?	
Ø What	can	we	do	if	our	code	isn’t	maintainable?	

• Answers	will	help	us	
Ø Design	our	own	code	
Ø Understand	others’	code	

Oct	26,	2016	 Sprenkle	-	CSCI209	 10	

All systems change during their life cycle



10/24/16 

6 

Best	Prac&ces	

• (DRY):	Don’t	repeat	yourself	
• Single	Responsibility	Principle	
• Shy	

Ø Avoid	Coupling	
• Tell,	Don’t	Ask	
• Open-closed	principle	
• Avoid	code	smells	

Oct	26,	2016	 Sprenkle	-	CSCI209	 11	

A lot of similar, related fundamental principles

Don’t	Repeat	Yourself	(DRY):	 	 	
	Knowledge	Representa&on	

• Intui9on:	when	need	to	change	representa&on,	
make	in	only	one	place	

	
• Requires	planning	

Ø What	data	needed,	how	represented	(e.g.,	type)	

Oct	26,	2016	 Sprenkle	-	CSCI209	 12	

Every piece of knowledge must have a �
single, unambiguous, and authoritative 

representation within a system



10/24/16 

7 

Single	Responsibility	Principle	(SRP)	

	
• Intui9on:	

Ø Each	responsibility	is	an	axis	of	change	
• More	than	one	reason	to	change	

Ø Responsibili&es	become	coupled	
• Changing	one	may	affect	the	other	
• Code	breaks	in	unexpected	ways	

Oct	26,	2016	 Sprenkle	-	CSCI209	 13	

There should never be more than �
one reason for a class to change

We’ve	talked	about	this	idea	in	this	class.	
Give	an	example	of	SRP.	

Shy	Code	
• Won’t	reveal	too	much	of	itself	
• Otherwise:	get	coupling	

Ø Sta&c,	dynamic,	domain,	temporal	

• Coupling	isn’t	always	bad…	

Oct	26,	2016	 Sprenkle	-	CSCI209	 14	

What techniques have we discussed 
for how to keep our code shy?



10/24/16 

8 

Sta&c	Coupling	
• Descrip&on:	Code	requires	other	code	to	compile	
• Problem	if	you	include	more	than	you	need	

Ø Example:	poor	use	of	inheritance	
• Brings	excess	baggage	
•  Inheritance	is	reserved	for	“is-a”	rela&onships	

Ø Base	class	should	not	include	op&onal	behavior		
Ø Not	“uses-a”	or	“has-a”		

• Solu&on:	use	composi6on	or	delega6on	instead	

Oct	26,	2016	 Sprenkle	-	CSCI209	 15	

Dynamic	Coupling	
• Descrip&on:	Code	uses	other	code	at	run&me	

Ø getOrder().getCustomer().  
getAddress().getState()

• Why	a	problem:	Relies	on	several	objects/classes	
and	their	state	
Ø If	others	change,	my	code	has	to	change	

• Solu&on:	Talk	directly	to	code	
Oct	26,	2016	 Sprenkle	-	CSCI209	 16	



10/24/16 

9 

Domain	Coupling	
• Descrip&on:	Business	rules,	policies	are	
embedded	in	code	

• Why	a	problem:	if	change	frequently,	code	has	to	
change	frequently	

• Solu&on:	put	into	another	place	(metadata)	
Ø Database,	property	file	
Ø Process	the	rules	

Oct	26,	2016	 Sprenkle	-	CSCI209	 17	

Temporal	Coupling	
• Descrip&on:	Dependencies	on	&me	

Ø Order	that	things	occur	
Ø Occur	at	a	certain	&me	
Ø Occur	by	a	certain	&me	
Ø Occur	at	the	same	&me	

• Solu&on:	Write	concurrent	code	

Oct	26,	2016	 Sprenkle	-	CSCI209	 18	



10/24/16 

10 

Tell,	Don’t	Ask	
• Think	of	methods	as	“sending	a	message”	
• Method	call:	sends	a	request	to	do	something	

Ø Don’t	ask	about	details	
Ø Black-box,	encapsula&on,	informa&on	hiding	

Oct	26,	2016	 Sprenkle	-	CSCI209	 19	

Open-Closed	Principle	
• Bertrand	Meyer	

Ø Author	of	Object-Oriented	So2ware	Construc6on	
•  Founda&onal	text	of	OO	programming	

• Design	modules	that	never	change	aoer	completely	
implemented	

•  If	requirements	change,	extend	behavior	by	adding	
code	
Ø Don’t	change	exis&ng	code	à	won’t	create	bugs!	

Oct	26,	2016	 Sprenkle	-	CSCI209	 20	

Principle: Software entities (classes, modules, 
methods, etc.) should be open for extension 

but closed for modification



10/24/16 

11 

Aqributes	of	Sooware	that	Adhere	to	OCP	

• Open	for	Extension	
Ø Behavior	of	module	can	be	extended	
Ø Make	module	behave	in	new	and	different	ways	

• Closed	for	Modifica&on	
Ø No	one	can	make	changes	to	module	

Oct	26,	2016	 Sprenkle	-	CSCI209	 21	

These attributes seem to be at odds with each other.
How can we resolve them?

Strategic	Closure	
• No	significant	program	can	be	completely	closed	

• Must	choose	kinds	of	changes	to	close	
Ø Requires	knowledge	of	users,	probability	of	changes	

Oct	26,	2016	 Sprenkle	-	CSCI209	 22	

Goal: Most probable changes should be closed


