Objectives

Code Smells
Refactoring

Oct 28, 2016 Sprenkle - CSCI209 1
Code Smells
A hint in the code that something
could be designed better
Duplicated code Switch statements/long if
Long method statements
Large class Shotgun surgery
Long parameter list Literals
Very similar child classes Global variables
Too many public Side effects
variables Using instanceof

Empty catch clauses

Oct 28, 2016 Sprenkle - CSCI209 2

Duplicated Code

What’s the problem with duplicated code?

Why do we like it?

What made us write the duplicated code?

What can we do when we have duplicated code?
(How can we get rid of the duplicate code?)

Oct 28, 2016 Sprenkle - CSCI209 3

Duplicated Code

What’s the problem with duplicated code?
If code changes, need to change in every location
Duplicate effort to test code to make sure it works
More statements for test suite to test!

When trying to search for code, may find a duplicate
code—> not the one you’re looking for

Oct 28, 2016 Sprenkle - CSCI209 4

Duplicated Code

Consider: same expression in at least one
method of a class

Solution: Extract method

Call method from those two places

Consider: duplicated code in 2 sibling child
classes

Parent

|

|

{ Sibl { Sib2

Oct 28, 2016 Sprenkle - CSCI209

Duplicated Code

Consider: duplicated code in 2 sibling child
classes
Extract method, put into parent class
Eclipse: extract method, pull up

If similar but not duplicate, extract the duplicate
code or parameterize

Consider: duplicated code in unrelated classes

Oct 28, 2016 Sprenkle - CSCI209

Duplicated Code

Consider: duplicated code in unrelated classes
» Ask: where does method belong?
» One solution:
Extract class
Use new class in classes
» Another solution:
Keep in one class
Other class calls that method

Oct 28, 2016 Sprenkle - CSCI209 7

Refactoring: Solution to Code Smells

Refactoring: Updating a program to

improve its design and maintainability
without changing its current functionality significantly

Example

» Creating a single method that replaces 2 or more
sections of similar code

Reduces redundant code
Makes code easier to debug, test

After refactoring your code, what should you do next?

Oct 28, 2016 Sprenkle - CSCI209 8

Long Methods

What’s the problem with long methods?
What made us write them?

How can we fix them?

What is an issue with lots of short methods?

Oct 28, 2016 Sprenkle - CSCI209 9

Long Methods: Issues and Solutions

Issues:
Hard to understand (see) what method does
Smaller methods have reader overhead
Look at code for called methods
But, should use descriptive names
In Eclipse, use F3 to jump to a method’s definition

Solutions:

Find lines of code that go together (may be identified
by a comment) and extract method

Oct 28, 2016 Sprenkle - CSCI209 10

Large Class

What’s the problem?

Oct 28, 2016 Sprenkle - CSCI209 11

Large Class

Issue: Too many instance variables = trying to do
too much
Violates Single Responsibility Principle

Solutions:
Bundle groups of variables together into another class
Look for common prefixes or suffixes
If includes optional instance variables (only sometimes
used), create child classes
Look at how users use the class for ideas of how to break
it up
Eclipse: Refactor = Extract Class or
Extract Superclass "

Oct 28, 2016

Long Parameter List

More difficult to use (do | have everything?)
Example: MediaItem, subclass constructors

If method signature changes, have a lot of places

to change

Solutions: Use objects
Instead of separate parameters for an object’s data
Group parameters together

Eclipse: Refactor = Introduce Parameter Object
OR Refactor - Change Method Signature

Oct 28, 2016 Sprenkle - CSCI209 13

Literals or Magic Numbers

If a number has a special meaning, make it a
constant

Distinguish between 0 and NO_VALUE_ASSIGNED

If value changes (e.g., -1 instead of 0), only one place
to change

Less error-prone (e.g., was | using 1 or -17?)

Oct 28, 2016 Sprenkle - CSCI209 14

Divergent Change & Shotgun Surgery

Problem: when make a change,
can’t identify single point in code to make change

Divergent Change Shotgun Surgery j__ j
Problem: one class Problem: a change ca®es

commonly changed in changes in many classes
different ways for different Solution:
reasons

» ldentify class that changes
Solution: should belong to

» ldentify changes for a
particular cause

» Putinto a class (extract)

Oct 28, 2016 Sprenkle - CSCI209 15

Data Clumps

Problem: You have some data that always “hangs
out together”

Possible Solution: Maybe they should be an
object
» Check: if you deleted one of those pieces of data,
would the others make sense?
If answer is no, should be an object

Oct 28, 2016 Sprenkle - CSCI209 16

Message Chaining

Dynamic coupling:
getOrder().getCustomer().getAddress().getState()
Problem: client coupled to navigation
structure
Depends on too many other classes
Change to intermediate class - Change in this
class
Fix: add delegate method
Example: add method getShippingState()
Can go too far if adding too many methods

Oct 28, 2016 17

Middle Man

Issue: Many methods of one class are delegating
to another class
How could this happen?
Refactoring!
Possible Solutions

Inline method into caller

If there is additional behavior, replace delegation
with inheritance to turn the middle man into a
subclass of the real object

Oct 28, 2016 Sprenkle - CSCI209 18

Lazy Class

Problem
Class in question doesn’t do much

Classes cost time and money to maintain and
understand

How could this happen?

Refactoring!

Planned to be implemented but never happened
Solution

Get rid of class
Inline or collapse subclass into parent class

Oct 28, 2016 Sprenkle - CSCI209 19

Speculative Generality

Beware of too much abstraction, allowing for too
much flexibility that isn’t required

Solution: Collapse classes

Oct 28, 2016 Sprenkle - CSCI209 20

Comments

Problem: Comments used as Febreze to cover up smells

» Describe what the code or method is doing
» Should be reserved for why, not what

Solutions:

» If need a comment for a block of code (or a long
statement) = create a method with a descriptive
name

» If need a comment to describe method, rename
method with more descriptive name

These comments are different from APl comments

Oct 28, 2016 Sprenkle - CSCI209 21

Rules of Thumb

Code smells are not always bad
» Do not always mean code is poorly designed

Open code is not always bad

Need to use your judgment
» Good judgment comes from experience.
» How do you get experience? Bad judgment works
every time

Goal: Gain experience to improve your judgment

oct_,— o= F 22

Set Up for in-class work

Import Bins project
Go to schedule page and download bins.tar

In Eclipse, select

File 2 Import = General = Existing projects into
workspace

Select the Archive file button
Choose the bins.tar file you just downloaded
Finish

Oct 28, 2016 Sprenkle - CSCI209

23

