
10/27/16

1

Objec&ves	
• Code	Smells	
• Refactoring	

Oct	28,	2016	 Sprenkle	-	CSCI209	 1	

Code	Smells	

•  Duplicated	code	
•  Long	method	
•  Large	class	
•  Long	parameter	list	
•  Very	similar	child	classes	
•  Too	many	public	
variables	

•  Empty	catch	clauses	

•  Switch	statements/long	if	
statements	

•  Shotgun	surgery	
•  Literals	
•  Global	variables	
•  Side	effects	
•  Using	instanceof

Oct	28,	2016	 Sprenkle	-	CSCI209	 2	

A hint in the code that something
could be designed better

10/27/16

2

Duplicated	Code	
• What’s	the	problem	with	duplicated	code?	

• Why	do	we	like	it?	
Ø What	made	us	write	the	duplicated	code?	

Oct	28,	2016	 Sprenkle	-	CSCI209	 3	

What can we do when we have duplicated code?
(How can we get rid of the duplicate code?)

Duplicated	Code	
• What’s	the	problem	with	duplicated	code?	

Ø If	code	changes,	need	to	change	in	every	loca&on	
Ø Duplicate	effort	to	test	code	to	make	sure	it	works	

• More	statements	for	test	suite	to	test!	
Ø When	trying	to	search	for	code,	may	find	a	duplicate	
codeà	not	the	one	you’re	looking	for	

Oct	28,	2016	 Sprenkle	-	CSCI209	 4	

10/27/16

3

Duplicated	Code	
• Consider:	same	expression	in	at	least	one	
method	of	a	class	
Ø Solu&on:	Extract	method	
Ø Call	method	from	those	two	places	

• Consider:	duplicated	code	in	2	sibling	child	
classes	

Oct	28,	2016	 Sprenkle	-	CSCI209	 5	

Parent	

Sib1	 Sib2	

Duplicated	Code	
• Consider:	duplicated	code	in	2	sibling	child	
classes	
Ø Extract	method,	put	into	parent	class	

• Eclipse:	extract	method,	pull	up	
Ø If	similar	but	not	duplicate,	extract	the	duplicate	
code	or	parameterize	

• Consider:	duplicated	code	in	unrelated	classes	

Oct	28,	2016	 Sprenkle	-	CSCI209	 6	

10/27/16

4

Duplicated	Code	
• Consider:	duplicated	code	in	unrelated	classes	

Ø Ask:	where	does	method	belong?	
Ø One	solu&on:	

• Extract	class	
• Use	new	class	in	classes	

Ø Another	solu&on:	
• Keep	in	one	class	
• Other	class	calls	that	method	

Oct	28,	2016	 Sprenkle	-	CSCI209	 7	

Refactoring:	Solu&on	to	Code	Smells	

• Example	
Ø Crea&ng	a	single	method	that	replaces	2	or	more	
sec&ons	of	similar	code	
• Reduces	redundant	code	
• Makes	code	easier	to	debug,	test	

Oct	28,	2016	 Sprenkle	-	CSCI209	 8	

After refactoring your code, what should you do next?

Refactoring: Updating a program to �
improve its design and maintainability �

without changing its current functionality significantly

10/27/16

5

Long	Methods	
• What’s	the	problem	with	long	methods?	
• What	made	us	write	them?	
• How	can	we	fix	them?	
• What	is	an	issue	with	lots	of	short	methods?	

Oct	28,	2016	 Sprenkle	-	CSCI209	 9	

Long	Methods:	Issues	and	Solu&ons	
•  Issues:	

Ø Hard	to	understand	(see)	what	method	does	
Ø Smaller	methods	have	reader	overhead	

• Look	at	code	for	called	methods	
• But,	should	use	descrip&ve	names	
•  In	Eclipse,	use	F3	to	jump	to	a	method’s	defini&on	

• Solu&ons:	
Ø Find	lines	of	code	that	go	together	(may	be	iden&fied	
by	a	comment)	and	extract	method	

Oct	28,	2016	 Sprenkle	-	CSCI209	 10	

10/27/16

6

Large	Class	
• What’s	the	problem?	

Oct	28,	2016	 Sprenkle	-	CSCI209	 11	

Large	Class	
•  Issue:	Too	many	instance	variables	à	trying	to	do	
too	much	
Ø Violates	Single	Responsibility	Principle	

• Solu&ons:	
Ø Bundle	groups	of	variables	together	into	another	class	

•  Look	for	common	prefixes	or	suffixes	
Ø  If	includes	op&onal	instance	variables	(only	some&mes	
used),	create	child	classes	

Ø Look	at	how	users	use	the	class	for	ideas	of	how	to	break	
it	up	

Oct	28,	2016	 Sprenkle	-	CSCI209	 12	

Eclipse: Refactor à Extract Class or
Extract Superclass

10/27/16

7

Long	Parameter	List	
• More	difficult	to	use	(do	I	have	everything?)	

Ø Example:	MediaItem,	subclass	constructors	
•  If	method	signature	changes,	have	a	lot	of	places	
to	change	

• Solu&ons:	Use	objects	
Ø Instead	of	separate	parameters	for	an	object’s	data	
Ø Group	parameters	together	

Oct	28,	2016	 Sprenkle	-	CSCI209	 13	

Eclipse: Refactor à Introduce Parameter Object
OR Refactor à Change Method Signature

Literals	or	Magic	Numbers	
•  If	a	number	has	a	special	meaning,	make	it	a	
constant	
Ø Dis&nguish	between	0	and	NO_VALUE_ASSIGNED	
Ø If	value	changes	(e.g.,	-1	instead	of	0),	only	one	place	
to	change	

Ø Less	error-prone	(e.g.,	was	I	using	1	or	-1?)	

Oct	28,	2016	 Sprenkle	-	CSCI209	 14	

Eclipse: Refactor à Extract Constant

10/27/16

8

Divergent	Change	&	Shotgun	Surgery	

Divergent	Change	
•  Problem:	one	class	

commonly	changed	in	
different	ways	for	different	
reasons	

•  Solu&on:	
Ø  Iden&fy	changes	for	a	

par&cular	cause	
Ø  Put	into	a	class	(extract)	

Shotgun	Surgery	
•  Problem:	a	change	causes	

changes	in	many	classes	
•  Solu&on:	

Ø  Iden&fy	class	that	changes	
should	belong	to	

Oct	28,	2016	 Sprenkle	-	CSCI209	 15	

Problem: when make a change,
can’t identify single point in code to make change

Goal: 1-to-1 mapping of common changes to classes

Data	Clumps	
• Problem:	You	have	some	data	that	always	“hangs	
out	together”	

• Possible	Solu&on:	Maybe	they	should	be	an	
object	
Ø Check:	if	you	deleted	one	of	those	pieces	of	data,	
would	the	others	make	sense?	
•  If	answer	is	no,	should	be	an	object	

Oct	28,	2016	 Sprenkle	-	CSCI209	 16	

Eclipse: Refactor à Extract Class

10/27/16

9

Message	Chaining	
• Dynamic	coupling:	
 getOrder().getCustomer().getAddress().getState()
•  Problem: client coupled to navigation

structure
Ø Depends on too many other classes
Ø Change to intermediate class à Change in this

class
•  Fix: add delegate method

Ø Example: add method getShippingState()
Ø Can go too far if adding too many methods

Oct	28,	2016	 Sprenkle	-	CSCI209	 17	

Eclipse: Check references
 Refactor à Extract Method

Middle	Man	
•  Issue:	Many	methods	of	one	class	are	delega&ng	
to	another	class	

• How	could	this	happen?	
Ø Refactoring!	

• Possible	Solu&ons	
Ø Inline	method	into	caller	
Ø If	there	is	addi&onal	behavior,	replace	delega&on	
with	inheritance	to	turn	the	middle	man	into	a	
subclass	of	the	real	object	

Oct	28,	2016	 Sprenkle	-	CSCI209	 18	

10/27/16

10

Lazy	Class	
• Problem	

Ø Class	in	ques&on	doesn’t	do	much	
Ø Classes	cost	&me	and	money	to	maintain	and	
understand	

• How	could	this	happen?	
Ø Refactoring!	
Ø Planned	to	be	implemented	but	never	happened	

• Solu&on	
Ø Get	rid	of	class	

•  Inline	or	collapse	subclass	into	parent	class	
Oct	28,	2016	 Sprenkle	-	CSCI209	 19	

Specula&ve	Generality	
• Beware	of	too	much	abstrac&on,	allowing	for	too	
much	flexibility	that	isn’t	required	

• Solu&on:	Collapse	classes	

Oct	28,	2016	 Sprenkle	-	CSCI209	 20	

10/27/16

11

Comments	

Ø Describe	what	the	code	or	method	is	doing	
Ø Should	be	reserved	for	why,	not	what	

• Solu&ons:	
Ø If	need	a	comment	for	a	block	of	code	(or	a	long	
statement)	à	create	a	method	with	a	descrip&ve	
name	

Ø If	need	a	comment	to	describe	method,	rename	
method	with	more	descrip&ve	name	

Oct	28,	2016	 Sprenkle	-	CSCI209	 21	

Problem: Comments used as Febreze to cover up smells

These comments are different from API comments

Rules	of	Thumb	
• Code	smells	are	not	always	bad	

Ø Do	not	always	mean	code	is	poorly	designed	

• Open	code	is	not	always	bad	

• Need	to	use	your	judgment	
Ø Good	judgment	comes	from	experience.	
Ø How	do	you	get	experience?		Bad	judgment	works	
every	&me	

	
Oct	28,	2016	 Sprenkle	-	CSCI209	 22	

Goal: Gain experience to improve your judgment

10/27/16

12

Set	Up	for	in-class	work	
•  Import	Bins	project	
• Go	to	schedule	page	and	download	bins.tar	
•  In	Eclipse,	select	

Ø File	à	Import	à	General	à	Exis&ng	projects	into	
workspace	

Ø Select	the	Archive	file	bupon	
• Choose	the	bins.tar	file	you	just	downloaded	

Ø Finish	

Oct	28,	2016	 Sprenkle	-	CSCI209	 23	

