
10/30/16

1

Objec&ves	
• Liskov	Subs&tu&on	Principle	
• Refactoring	for	Extensibility	

Oct	31,	2016	 Sprenkle	-	CSCI209	 1	

LISKOV	SUBSTITUTION	PRINCIPLE	

Oct	31,	2016	 Sprenkle	-	CSCI209	 2	

10/30/16

2

Liskov	Subs&tu&on	Principle	(LSP)	
• The	subs&tu&on	principle:	

•  In	other	words…	

Oct	31,	2016	 Sprenkle	-	CSCI209	 3	

If for each object o1 of type S there is an object o2 of
type T such that for all programs P defined in terms of T,

the behavior of P is unchanged �
when o1 is substituted for o2, �

then S is a subtype of T.

If a module is using a base class, then it should �
be able to replace the base class with a derived class �

without affecting the functioning of the module.

Liskov & Wing, 1994

Code	Smell:	Using	instanceof

• Why isn’t this good code?
•  How could we write this in a better way?

Oct	31,	2016	 Sprenkle	-	CSCI209	 4	

public void drawShape(Shape shape) {
if (shape instanceof Square) {

drawSquare(shape);
}
else if(shape instanceof Circle) {

drawCircle(shape);
}

}

10/30/16

3

Design	by	Contract	
• Methods	of	classes	declare	precondi&ons	and	
postcondi&ons	
Ø Precondi&ons	must	be	met	for	method	to	execute	
Ø AVer	execu&ng,	postcondi&ons	must	be	true	

• Example	for	Rectangle’s	setWidth:	
Ø myWidth == newWidth &&  
myHeight == oldHeight

Oct	31,	2016	 Sprenkle	-	CSCI209	 5	

Design	by	Contract	and	LSP	
• Methods	of	classes	declare	precondi&ons	and	
postcondi&ons	
Ø Precondi&ons	must	be	met	for	method	to	execute	
Ø AVer	execu&ng,	postcondi&ons	must	be	true	

• Example	for	Rectangle’s	setWidth:	
Ø myWidth == newWidth &&  
myHeight == oldHeight

• For	deriva&ves	
Ø Precondi&ons	can	only	be	weakened	
Ø Postcondi&ons	can	only	be	strengthened	
➥ Deriva&ves	must	adhere	to	constraints	for	base	class	

Oct	31,	2016	 Sprenkle	-	CSCI209	 6	

10/30/16

4

Design	by	Contract	and	LSP	
• Recall:	User	interacts	with	interface,	e.g.,	the	
base	class	

• For	deriva&ves	
Ø Precondi&ons	can	only	be	weakened	
Ø Postcondi&ons	can	only	be	strengthened	
➥ Deriva&ves	must	adhere	to	constraints	for	base	class	

Oct	31,	2016	 Sprenkle	-	CSCI209	 7	

Base
Class

Derived
Class

Interface

What if preconditions are stronger?
What if postconditions are weaker?

Summary	of	LSP	
• Liskov	Subs&tu&on	Principle	(a.k.a.	design	by	
contract)	is	an	important	feature	of	programs	
that	conform	to	the	Open-Closed	Principle	

• Derived	types	must	be	completely	subs&tutable	
for	their	base	types	

• Derived	types	can	then	be	modified	without	
consequence	

Oct	31,	2016	 Sprenkle	-	CSCI209	 8	

10/30/16

5

Oct	31,	2016	 Sprenkle	-	CSCI209	 9	

http://lostechies.com/derickbailey/2009/02/11/
solid-development-principles-in-motivational-
pictures/

Liskov	Subs&tu&on	Principle	(LSP)	
• Named	aVer	Barbara	Liskov	

Ø MIT	Professor	of	Engineering	
Ø 2008	ACM	Turing	Award	
Ø Contribu&ons	to	programming	
languages,	pervasive	compu&ng	

Ø Trivia:	first	woman	in	the	United	
States	to	receive	a	Ph.D.	from	a	
computer	science	department	
(Stanford,	1968)	

Oct	31,	2016	 Sprenkle	-	CSCI209	 10	Liskov & Wing, 1994

10/30/16

6

&	Wing	
• Jeannede	Wing	

Ø Corporate	Vice	
President	of	MicrosoV	
Research	

Ø Big	proponent	of	
computa&onal	
thinking	as	assistant	
director	for	Computer	
and	Informa&on	
Science	and	
Engineering	at	the	NSF	
from	2007	to	2010.	

Oct	31,	2016	 Sprenkle	-	CSCI209	 11	

Discussion	of	Abstrac&on	
• What	does	abstrac&on	allow?	

• Are	there	any	limita&ons	to	abstrac&on?	

Oct	31,	2016	 Sprenkle	-	CSCI209	 12	

10/30/16

7

Summary	of	Designing	for	Change	

• Can	depend	on	code	that	is	stable	and	unlikely	to	
change	
Ø Example	of	stable	code:	System.out

Oct	31,	2016	 Sprenkle	-	CSCI209	 13	

Use abstraction for code �
that is likely to change

Refactoring	Summary	
• Write	code	and	then	rewrite	code	

Ø Eye	toward	extensibility,	flexibility,	maintainability,	and	
readability	

Ø Maintain	correctness	
• Reading/understanding	other	people’s	code	can	be	
difficult	
Ø Make	your	code	readable,	understandable	

• Probably	impossible	to	design/write	“correctly”	the	
first	&me	
Ø A	lot	harder	to	get	the	logic	right,	make	sure	you’re	not	
crea&ng	bugs,	know/check	the	right	answer…	

Ø Could	cause	yourself	headaches	coding	this	way	first	
Oct	31,	2016	 Sprenkle	-	CSCI209	 14	

10/30/16

8

REFACTORING	FOR	EXTENSIBILITY	

Oct	31,	2016	 Sprenkle	-	CSCI209	 15	

Simula&ng	a	Roulede	Game	

Oct	31,	2016	 Sprenkle	-	CSCI209	 16	

In Eclipse, Import Existing Project into Workspace
roulette.tar on the course web site

