Objectives

Event handling

Design Patterns
» Composition
» Strategy

Nov 7, 2016 Sprenkle - CSCI209

Other types of events

EVENT HANDLING

Nov 7, 2016 Sprenkle - CSCI209

Window Events

When a user closes a window, the window
simply stops being displayed
Program does not end

Suppose we want our program to end when a
certain frame is closed

Closing a frame is a window event
In contrast to an action event

Nov 7, 2016 Sprenkle - CSCI209 3

Catching Window Events

To catch window events, create an object of a

class that implements WindowL1istener
interface

WindowL1istener is registered with frame using
its addWindowL1istener method

Note the parallels with action events

Different listener type and register it using a different
(but similar) method call

Nov 7, 2016 Sprenkle - CSCI209 4

The WindowListener Interface

Contains 7 methods
One for each type of window event

A class that implements WindowListener must
implement all 7 methods

public interface WindowlListener {

void windowOpened(WindowEvent e);

void windowClosing(WindowEvent e);
void windowClosed(WindowEvent e);

void windowIconified(WindowEvent e);
void windowDeiconified(WindowEvent e);
volid windowActivated(WindowEvent e);
void windowDeactivated(WindowEvent e);

Example: Implementing a
WindowlL1istener

‘What does this class do? ‘

class Terminator implements WindowlListener {
public void windowClosing(WindowEvent evt) {
System.exit(0);
ks

public void windowOpened(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}

}

Nov 7, 2016 Sprenkle - CSCI209 6

Adapter Classes

Writing code for 6 methods that don’t do
anything is somewhat tedious

Eclipse helps
Most AWT listener interfaces have a
corresponding adapter class

Implements each of interface’s methods but does
nothing inside each

No adapter classes for AWT interfaces with only one
method (such as ActionListener)

Nov 7, 2016 Sprenkle - CSCI209 7

Adapter Classes

If you want a WindowListener class that
does nothing with most window events

Create a new class that extends
WindowAdapter and override relevant method(s)

When is extending a class a problem?

How big of a concern is that for this specific case/
type of class?

Nov 7, 2016 Sprenkle - CSCI209 8

Extending an Adapter Class

Redefine Terminator in much less code...

class Terminator extends WindowAdapter {
public void windowClosing(WindowEvent evt) {
System.ex1t(0);
ks

// all other methods are the same as 1in
// WindowAdapter-all do nothing.

Nov 7, 2016 Sprenkle - CSCI209 9

Registering a WindowListener

Register Terminator to listen for window
events

Assuming that our “main” window frame is named
frame

Result if frame is closed, the program should
exit

WindowListener listener = new Terminator();
frame.addWindowListener(listener);

Nov 7, 2016 Sprenkle - CSCI209 10

Alternative: Registering a
WindowL1istener

frame.addWindowlListener(new
WindowAdapter() {
public void windowClosing(WindowEvent evt) {
System.exit(@);
ks

DN

What is going on in this code?

Nov 7, 2016 Sprenkle - CSCI209 11

TYPES OF EVENTS

Nov 7, 2016 Sprenkle - CSCI209 12

AWT Event Hierarchy

10 different types of events in AWT
Semantic events
Low-level events

Rule of thumb: low-level events cause
semantic events to happen

Example:
Adjusting a scrollbar is a semantic event

Made possible by low-level events, such as dragging
the mouse

Nov 7, 2016 Sprenkle - CSCI209 13

AWT Event Types: Semantic Events

Semantic event: event that expresses what a
user did

ActionEvent button click, menu selection, selecting a list
item, pressing ENTER in a text field

AdjustmentEvent Useradjusted a scroll bar

ItemEvent user made a selection from a set of
checkboxes or list items

TextEvent the contents of a text field or text area
were changed

Nov 7, 2016 Sprenkle - CSCI209 14

AWT Event Types: Low-Level Events

Low-level event: makes a semantic event
possible

component changed (resized, moved,

ComponentEvent shown, etc...)

KeyEvent a key pressed or released
MouseEvent Lnuot-l:;ﬁ gz:sgdor dragged, or mouse
FocusEvent component got or lost focus
WindowEvent window activated, closed, etc.

ContainerEvent componentadded or deleted

Nov 7, 2016 Sprenkle - CSCI209 15

AWT Event Listeners

11 Event Listener Interfaces

ActionListener, AdjustmentListener,
ItemListener, TextlListener,
ComponentListener, ContainerlListener,
FocusListener, KeylListener,
MouselListener, MouseMotionlListener, and
WindowListener

See API for interfaces and their methods

Each listener interface with > 1 method has a
corresponding adapter class
Implements interface with all empty methods

Nov 7, 2016 Sprenkle - CSCI209 16

Components and ComponentEvents

A component is a user interface element
» Examples: button, textfield, scrollbar

All low-level events inherit from ComponentEvent

» getComponent() returns component that originated
event
Similar to getSource() but returns object as a Component
and not an Object
Ex: A user inputs text into a text field, generating a
key event. Calling getComponent() on the event
returns a reference to that text field

@0 O Testcul event.getComponent()

Enter text: 't ‘

javax.swing.JTextField[,75,5,87x28, ..

Nov 7, 2016 Sprenkle - CSCI209 17

Containers and ContainerEvents

A container is a screen area or component

» Can contain components, such as a panel
A ContainerEvent is generated whenever a
component is added or removed from the
container

» Supports dynamically-changing user interfaces

Nov 7, 2016 Sprenkle - CSCI209 18

FocusEvents

A FocusEvent is generated when a
component gains or loses focus

FocusListener must implement two
methods:

»focusGained(): called whenever listener’s
event source gains focus

»focusLost(): called whenever listener’s event
source loses focus

Nov 7, 2016 Sprenkle - CSCI209 19

KeyEvents

A KeyEvent is generated when a key is pressed
or released

A KeyListener must implement 3 methods:
»keyPressed() will run whenever a key is pressed

»keyReleased() will run whenever that key is
released

»keyTyped() combines the two above
Runs when key is pressed and then released
Signifies a keystroke

Nov 7, 2016 Sprenkle - CSCI209 20

KeyEvents

Any Component can be an event source for a
KeyEvent

» A component generates a KeyEvent whenever a
key is typed in that component

Example:

1. User types into a text field
2. That text field generates appropriate KeyEvents

Nov 7, 2016 Sprenkle - CSCI209 21

MouseEvents

MouseEvents are generated like KeyEvents
> mousePressed()
> mouseReleased()
> mouseClicked()

» You can ignore first 2 if you only care about clicking

Call getClickCount() on aMouseEvent object to
distinguish between a single and a double click

Distinguish between mouse buttons by calling
getModifiers() on aMouseEvent object
» E.g., middle button

Nov 7, 2016 Sprenkle - CSCI209 22

MouseEvents

MouseEvents are also generated when mouse
pointer enters and leaves components
(mouseEntered() and mouseExited))

Part of MouselListener interface
Actual movement of mouse is handled with
MouseMotionListener interface

Most applications only care about where you click
and not how and where you move mouse pointer
around

Nov 7, 2016 Sprenkle - CSCI209 23

DESIGN PATTERNS

Nov 7, 2016 Sprenkle - CSCI209 24

Design Pattern

Not a finished design that can be transformed
directly into code
Description or template for how to solve a
problem that can be used in many different
situations

“Experience reuse” rather than code reuse

Nov 7, 2016 Sprenkle - CSCI209 25

Defined Design Patterns

Software best practices

Catalogued and discussed in
Design Patterns: Elements of Reusable Object-
Oriented Software

Written by the “Gang of Four”:
Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides

Erich Gamma also co-wrote JUnit framework

Didn’t design the patterns; identified them

Nov 7, 2016 Sprenkle - CSCI209 26

Understanding Code

Recognize design pattern in code base you're
using
Understand code design better

Nov 7, 2016 Sprenkle - CSCI209 27

Applying Design Patterns
Recognize problem as one that can be solved by

a design pattern
Apply pattern to your problem

Danger: over-applying design patterns
» Fall back: Identify and resolve code smells

Nov 7, 2016 Sprenkle - CSCI209 28

