
11/4/16 

1 

Objec&ves	
• Event	handling		
• Design	Pa6erns	

Ø Composi&on	
Ø Strategy	

Nov	7,	2016	 Sprenkle	-	CSCI209	 1	

EVENT	HANDLING	
Other	types	of	events	

Nov	7,	2016	 Sprenkle	-	CSCI209	 2	



11/4/16 

2 

Window	Events	
• When	a	user	closes	a	window,	the	window	
simply	stops	being	displayed	
Ø Program	does	not	end	

• Suppose	we	want	our	program	to	end	when	a	
certain	frame	is	closed	

• Closing	a	frame	is	a	window	event	
Ø In	contrast	to	an	ac#on	event	

Nov	7,	2016	 Sprenkle	-	CSCI209	 3	

Catching	Window	Events	
• To	catch	window	events,	create	an	object	of	a	
class	that	implements	WindowListener	
interface	
Ø WindowListener	is	registered	with	frame	using	
its	addWindowListener	method	

• Note	the	parallels	with	ac&on	events	
Ø Different	listener	type	and	register	it	using	a	different	
(but	similar)	method	call	

Nov	7,	2016	 Sprenkle	-	CSCI209	 4	



11/4/16 

3 

The	WindowListener Interface	
• Contains	7	methods	

Ø One	for	each	type	of	window	event	
Ø A	class	that	implements	WindowListener must	
implement	all	7	methods	

Nov	7,	2016	 Sprenkle	-	CSCI209	 5	

public interface WindowListener {
void windowOpened(WindowEvent e);
void windowClosing(WindowEvent e);
void windowClosed(WindowEvent e);
void windowIconified(WindowEvent e);
void windowDeiconified(WindowEvent e);
void windowActivated(WindowEvent e);
void windowDeactivated(WindowEvent e);

}

Example:	Implemen&ng	a	
WindowListener

Nov	7,	2016	 Sprenkle	-	CSCI209	 6	

class Terminator implements WindowListener {
public void windowClosing(WindowEvent evt) {

System.exit(0);
}

public void windowOpened(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}

}

What does this class do?



11/4/16 

4 

Adapter	Classes	
• Wri&ng	code	for	6	methods	that	don’t	do	
anything	is	somewhat	tedious	
Ø Eclipse	helps	

• Most	AWT	listener	interfaces	have	a	
corresponding	adapter	class	
Ø Implements	each	of	interface’s	methods	but	does	
nothing	inside	each	

Ø No	adapter	classes	for	AWT	interfaces	with	only	one	
method	(such	as	ActionListener)	

Nov	7,	2016	 Sprenkle	-	CSCI209	 7	

Adapter	Classes	
•  If	you	want	a	WindowListener class	that	
does	nothing	with	most	window	events	
Ø Create	a	new	class	that	extends 
WindowAdapter and	override	relevant	method(s)	

• When	is	extending	a	class	a	problem?	
Ø How	big	of	a	concern	is	that	for	this	specific	case/
type	of	class?	

Nov	7,	2016	 Sprenkle	-	CSCI209	 8	



11/4/16 

5 

Extending	an	Adapter	Class	
• Redefine	Terminator in	much	less	code…	

Nov	7,	2016	 Sprenkle	-	CSCI209	 9	

class Terminator extends WindowAdapter {
public void windowClosing(WindowEvent evt) {

System.exit(0);
}
// all other methods are the same as in 
// WindowAdapter—all do nothing.

}

Registering	a	WindowListener
• Register	Terminator to	listen	for	window	
events	
Ø Assuming	that	our	“main”	window	frame	is	named	
frame

• Result	if	frame is	closed,	the	program	should	
exit	

Nov	7,	2016	 Sprenkle	-	CSCI209	 10	

WindowListener listener = new Terminator();
frame.addWindowListener(listener);



11/4/16 

6 

Alterna&ve:	Registering	a	
WindowListener 

Nov	7,	2016	 Sprenkle	-	CSCI209	 11	

frame.addWindowListener( new
WindowAdapter() {

public void windowClosing(WindowEvent evt) {
System.exit(0);

}
} );

What is going on in this code?

TYPES	OF	EVENTS	

Nov	7,	2016	 Sprenkle	-	CSCI209	 12	



11/4/16 

7 

AWT	Event	Hierarchy	
• 10	different	types	of	events	in	AWT	

Ø Seman&c	events	
Ø Low-level	events	

• Example:		
Ø Adjus&ng	a	scrollbar	is	a	seman#c	event	
Ø Made	possible	by	low-level	events,	such	as	dragging	
the	mouse	

Nov	7,	2016	 Sprenkle	-	CSCI209	 13	

Rule of thumb: low-level events cause
semantic events to happen

AWT	Event	Types:	Seman&c	Events	
• Seman7c	event:	event	that	expresses	what	a	
user	did	

Nov	7,	2016	 Sprenkle	-	CSCI209	 14	

Type	 Cause	
ActionEvent bu6on	click,	menu	selec&on,	selec&ng	a	list	

item,	pressing	ENTER	in	a	text	field	

AdjustmentEvent User	adjusted	a	scroll	bar	

ItemEvent user	made	a	selec&on	from	a	set	of	
checkboxes	or	list	items	

TextEvent the	contents	of	a	text	field	or	text	area	
were	changed	



11/4/16 

8 

AWT	Event	Types:	Low-Level	Events	
• Low-level	event:	makes	a	seman&c	event	
possible	

Nov	7,	2016	 Sprenkle	-	CSCI209	 15	

Type	 Cause	

ComponentEvent component	changed	(resized,	moved,	
shown,	etc…)	

KeyEvent a	key	pressed	or	released	

MouseEvent mouse	moved	or	dragged,	or	mouse	
bu6on	pressed	

FocusEvent component	got	or	lost	focus	

WindowEvent window	ac&vated,	closed,	etc.	

ContainerEvent component	added	or	deleted	

AWT	Event	Listeners	
• 11	Event	Listener	Interfaces	

Ø ActionListener, AdjustmentListener, 
ItemListener, TextListener, 
ComponentListener, ContainerListener, 
FocusListener, KeyListener, 
MouseListener, MouseMotionListener, and 
WindowListener

• See	API	for	interfaces	and	their	methods	
• Each	listener	interface	with	>	1	method	has	a	
corresponding	adapter	class	
Ø  Implements	interface	with	all	empty	methods	

Nov	7,	2016	 Sprenkle	-	CSCI209	 16	



11/4/16 

9 

Components	and	ComponentEvents	
• A	component	is	a	user	interface	element	

Ø Examples:	bu6on,	texgield,	scrollbar	
• All	low-level	events	inherit	from	ComponentEvent

Ø getComponent() returns	component	that	originated	
event	
•  Similar	to	getSource()	but	returns	object	as	a	Component 
and	not	an	Object

• Ex:	A	user	inputs	text	into	a	text	field,	genera&ng	a	
key	event.		Calling	getComponent()	on	the	event	
returns	a	reference	to	that	text	field	

Nov	7,	2016	 Sprenkle	-	CSCI209	 17	
javax.swing.JTextField[,75,5,87x28, …

event.getComponent()  

Containers	and	ContainerEvents	
• A	container	is	a	screen	area	or	component	

Ø Can	contain	components,	such	as	a	panel	

• A	ContainerEvent	is	generated	whenever	a	
component	is	added	or	removed	from	the	
container	
Ø Supports	dynamically-changing	user	interfaces	

Nov	7,	2016	 Sprenkle	-	CSCI209	 18	



11/4/16 

10 

FocusEvents	

• A	FocusEvent	is	generated	when	a	
component	gains	or	loses	focus	

• FocusListener	must	implement	two	
methods:	
Ø focusGained():	called	whenever	listener’s	
event	source	gains	focus	

Ø focusLost():	called	whenever	listener’s	event	
source	loses	focus	

Nov	7,	2016	 Sprenkle	-	CSCI209	 19	

KeyEvents	
• A	KeyEvent	is	generated	when	a	key	is	pressed	
or	released	

• A	KeyListener	must	implement	3	methods:	
Ø keyPressed()	will	run	whenever	a	key	is	pressed	
Ø keyReleased()	will	run	whenever	that	key	is	
released	

Ø keyTyped()	combines	the	two	above	
• Runs	when	key	is	pressed	and	then	released	
• Signifies	a	keystroke	

Nov	7,	2016	 Sprenkle	-	CSCI209	 20	



11/4/16 

11 

KeyEvents	
• Any	Component can	be	an	event	source	for	a	
KeyEvent
Ø A	component	generates	a	KeyEvent	whenever	a	
key	is	typed	in	that	component	

• Example:		
1.  User	types	into	a	text	field	
2.  That	text	field	generates	appropriate	KeyEvents	

Nov	7,	2016	 Sprenkle	-	CSCI209	 21	

MouseEvents	
• MouseEvents	are	generated	like	KeyEvents	

Ø mousePressed()
Ø mouseReleased()
Ø mouseClicked()
Ø You	can	ignore	first	2	if	you	only	care	about	clicking	

• Call	getClickCount()	on	a	MouseEvent	object	to	
dis&nguish	between	a	single	and	a	double	click	

• Dis&nguish	between	mouse	bu6ons	by	calling	
getModifiers()	on	a	MouseEvent	object	
Ø E.g.,	middle	bu6on	

Nov	7,	2016	 Sprenkle	-	CSCI209	 22	



11/4/16 

12 

MouseEvents	
• MouseEvents	are	also	generated	when	mouse	
pointer	enters	and	leaves	components	
(mouseEntered()	and	mouseExited())	
Ø Part	of	MouseListener interface		

• Actual	movement	of	mouse	is	handled	with	
MouseMotionListener interface	
Ø Most	applica&ons	only	care	about	where	you	click	
and	not	how	and	where	you	move	mouse	pointer	
around	

Nov	7,	2016	 Sprenkle	-	CSCI209	 23	

DESIGN	PATTERNS	

Nov	7,	2016	 Sprenkle	-	CSCI209	 24	



11/4/16 

13 

Design	Pa6ern	

• Not	a	finished	design	that	can	be	transformed	
directly	into	code	

• Descrip&on	or	template	for	how	to	solve	a	
problem	that	can	be	used	in	many	different	
situa&ons	
Ø “Experience	reuse”	rather	than	code	reuse	

Nov	7,	2016	 Sprenkle	-	CSCI209	 25	

General reusable solution to a commonly 
occurring problem in software design

Defined	Design	Pa6erns	
• Sokware	best	prac&ces	
• Catalogued	and	discussed	in		
Design	Pa5erns:	Elements	of	Reusable	Object-
Oriented	So@ware		
Ø Wri6en	by	the	“Gang	of	Four”:		
Erich	Gamma,	Richard	Helm,	Ralph	Johnson	and	John	
Vlissides	
• Erich	Gamma	also	co-wrote	JUnit	framework	

Ø Didn’t	design	the	pa6erns;	iden&fied	them	

Nov	7,	2016	 Sprenkle	-	CSCI209	 26	



11/4/16 

14 

Understanding	Code	
1.  Recognize	design	pa6ern	in	code	base	you’re	

using	
2. Understand	code	design	be6er	

Nov	7,	2016	 Sprenkle	-	CSCI209	 27	

Applying	Design	Pa6erns	
1.  Recognize	problem	as	one	that	can	be	solved	by	

a	design	pa6ern	
2.  Apply	pa6ern	to	your	problem	

Nov	7,	2016	 Sprenkle	-	CSCI209	 28	

Danger: over-applying design patterns
Ø  Fall back: Identify and resolve code smells


