Objectives

Design Patterns

» Observer

» MVC

Dependency Inversion Principle
» Factory design pattern

» Screensavers
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Design Pattern: Observer

Defines a 1-to-many dependency between
objects

When one object changes state, all of its
dependents are notified and updated

automatically
Automatic update/

% Object
Subject 2| Object

Object that | Object
holds state Dependent Objects
Ex: Publisher Ex: Subscribers
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Have we seen this pattern?

Observer Pattern

Subject —>  Observer
registerObserver() association update()
removeObserver()
notifyObservers() implementation

implementationq association
ConcreteSubject (€ ConcreteObserver
registerObserver() update()
removeObserver() //observer-specific
notifyObservers() //methods
getState()
setState()
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Design Principle: Loose Coupling
A principle behind Observer pattern

Goal: loosely coupled designs
between objects that interact

Loosely coupled objects can interact but have
very little knowledge of each other

Minimize dependency between objects

More flexible systems

Handle change
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Model - Viewer - Controller (MVC)

A common design pattern for GUIs

Separate
» Model: application data
» View: graphical representation
» Controller: input processing

. — .
Modifies Notifies
Model
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Model-Viewer-Controller

. — .
Modifies Notifies
Model

Can have multiple viewers and controllers

Goal: modify one component without affecting
others

[ Controller ]

Direct associations

| Model |&—{ view |
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—
MOdEI -
Model

Code that carries out some task
Nothing about how view presented to user
Purely functional

Must be able to register views and notify views
of changes
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Multiple Views

Provides GUI interface components of
model

» Look & Feel of the application

User manipulates view
» Informs controller of change

Example of multiple views: ——— |

spreadsheetdata @ ——--=-=

» Rows/columns in spreadsheet —n
> Pie chart, bar chart, ... E
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Controller(s)

Controller

Takes user input and figures out what it means
to the model

» Makes decisions about behavior of model based on
ul

Update model as user interacts with view
» Calls model’s mutator methods

Views are associated with controllers
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Dependency Inversion Principle

Depend upon

abstractions
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Dependency Inversion Principle

High-level components should not depend on
low-level components
Both should depend on abstractions

Abstractions should not depend upon details.
Details should depend upon abstractions

“Inversion” from the way you think
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FACTORY DESIGN PATTERN
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Design Pattern: Factory Methods

Allows creating objects without specifying exact
(concrete) class of created object

Often used to refer to any method whose main
purpose is creating objects

How it works:
Define a method for creating objects

Child classes override method to specify the derived
type of product that will be created
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Factory Method Pattern

interface interface
Product Creator
factoryMethod()
anOperation()
implementation association ?mplementation
ConcreteProduct @ ConcreteCreator
factoryMethod()

UML Class Diagram
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Guidelines to Follow DIP

No variable should hold a reference to a concrete
class

Using new -> holding reference to concrete class

Use factory instead
No class should derive from a concrete class

Why? Depends on a concrete class

Derive from an interface or abstract class instead
No method should override an implemented
method of its base class

Base class wasn’t an abstraction

Those methods are meant to be shared by child classes

What'’s a problem with following
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GRAPHICS PROGRAMMING
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Graphics Object

Abstract class
Implementation different for each platform

A collection of settings for drawing images and
text, such as colors and fonts

Where used:
paintComponent(Graphics g)
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Drawing Lines, Rectangles, Ovals

Draw ovals, rounded rectangles within bounding
rectangle

Starting Position of oval
<5 Y width

height

Filled or outlined (e.g., f111Rect vs
drawRect)

Can also draw arcs, polygons, polylines
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Colors

Colors made up of three components
» Red, Green, Blue component
» RGB values
Components: either 0 to 255 or 0.0 to 1.0

Color class defines 13 color constants

»black, blue, cyan, darkGray, gray,
green, lightGray, magenta, orange,
pink, red, white,andyellow

» Also defined in all caps

» See AP http://en.wikipedia.org/wiki/
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Using Graphics object

Set the color/font
Draw the shape/string

public void paintComponent(Graphics g) {

super.paintComponent(g);
this.setBackground(Color.WHITE);

// set new drawing color using integers
g.setColor(new Color(255, @, 0));

g.fillRect(15, 25, 100, 20);

g.drawString("Current RGB: " + g.getColor(), 130, 40);
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Understanding Code

Import existing Java project:
/csdept/local/courses/cs209/handouts/
screensavers.tar.gz

Simple Bouncers
» How draws
» How animates
Screen Savers
» What represents an object in the screen saver?
» How generates screen saver objects?
» How handles animation?
» How handles events?
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