
11/7/16 

1 

Objec&ves	
• Design	Pa1erns	

Ø Observer	
Ø MVC	

• Dependency	Inversion	Principle	
Ø Factory	design	pa1ern	
Ø Screensavers	

Nov	11,	2016	 Sprenkle	-	CSCI209	 1	

Design	Pa1ern:	Observer	
• Defines	a	1-to-many	dependency	between	
objects	

• When	one	object	changes	state,	all	of	its	
dependents	are	no&fied	and	updated	
automa&cally	

Nov	11,	2016	 Sprenkle	-	CSCI209	 2	

Subject	

Object that 
holds state Dependent Objects

Automatic update/
notification Object	

Object	

Object	

Ex: Publisher Ex: Subscribers



11/7/16 

2 

Observer	Pa1ern	

Nov	11,	2016	 Sprenkle	-	CSCI209	 3	

Subject
registerObserver()
removeObserver()
notifyObservers()

Observer
update()

ConcreteSubject
registerObserver()
removeObserver()
notifyObservers()
getState()
setState()

ConcreteObserver
update()
//observer-specific
//methods

Have we seen this pattern?

implementation

implementation

association

association

Design	Principle:	Loose	Coupling	
• A	principle	behind	Observer	pa1ern	

	
	

• Loosely	coupled	objects	can	interact	but	have	
very	li1le	knowledge	of	each	other	
Ø Minimize	dependency	between	objects	
Ø More	flexible	systems	
Ø Handle	change	

Nov	11,	2016	 Sprenkle	-	CSCI209	 4	

Goal: loosely coupled designs 
between objects that interact



11/7/16 

3 

Model	-	Viewer	-	Controller	(MVC)	
• A	common	design	pa3ern	for	GUIs	
• Separate	

Ø Model:	applica&on	data	
Ø View:	graphical	representa&on	
Ø Controller:	input	processing	

Nov	11,	2016	 Sprenkle	-	CSCI209	 5	

Model Controller	 View	
NotifiesModifies

Model-Viewer-Controller	

• Can	have	mul&ple	viewers	and	controllers	
• Goal:	modify	one	component	without	affec&ng	
others	

Nov	11,	2016	 Sprenkle	-	CSCI209	 6	

Model Controller	 View	
NotifiesModifies

Model View

Controller

Direct associations 



11/7/16 

4 

Model	
• Code	that	carries	out	some	task	
• Nothing	about	how	view	presented	to	user	
• Purely	func6onal	
• Must	be	able	to	register	views	and	no&fy	views	
of	changes	

Nov	11,	2016	 Sprenkle	-	CSCI209	 7	

Model 

Mul&ple	Views	
• Provides	GUI	interface	components	of	
model	
Ø Look	&	Feel	of	the	applica&on	

• User	manipulates	view	
Ø Informs	controller	of	change	

• Example	of	mul&ple	views:	
spreadsheet	data	
Ø Rows/columns	in	spreadsheet	
Ø Pie	chart,	bar	chart,	…	

Nov	11,	2016	 Sprenkle	-	CSCI209	 8	

View	
View	
View	



11/7/16 

5 

Controller(s)	

• Takes	user	input	and	figures	out	what	it	means	
to	the	model	
Ø Makes	decisions	about	behavior	of	model	based	on	
UI	

• Update	model	as	user	interacts	with	view	
Ø Calls	model’s	mutator	methods	

• Views	are	associated	with	controllers	

Nov	11,	2016	 Sprenkle	-	CSCI209	 9	

Controller	Controller	Controller	

Dependency	Inversion	Principle	

Nov	11,	2016	 Sprenkle	-	CSCI209	 10	

Depend upon 
abstractions



11/7/16 

6 

Dependency	Inversion	Principle	

• High-level	components	should	not	depend	on	
low-level	components	
Ø Both	should	depend	on	abstrac&ons	

• Abstrac&ons	should	not	depend	upon	details.		
Details	should	depend	upon	abstrac&ons	

• “Inversion”	from	the	way	you	think	

Nov	11,	2016	 Sprenkle	-	CSCI209	 11	

Depend	upon	abstrac&ons.	
Do	not	depend	upon	concrete	classes.	

FACTORY	DESIGN	PATTERN	

Nov	11,	2016	 Sprenkle	-	CSCI209	 12	



11/7/16 

7 

Design	Pa1ern:	Factory	Methods	
• Allows	crea&ng	objects	without	specifying	exact	
(concrete)	class	of	created	object		

• Oken	used	to	refer	to	any	method	whose	main	
purpose	is	crea&ng	objects	

• How	it	works:	
1.  Define	a	method	for	crea&ng	objects	
2.  Child	classes	override	method	to	specify	the	derived	

type	of	product	that	will	be	created	

Nov	11,	2016	 Sprenkle	-	CSCI209	 13	

Factory	Method	Pa1ern	

Nov	11,	2016	 Sprenkle	-	CSCI209	 14	

Product Creator
factoryMethod()
anOperation()

ConcreteProduct ConcreteCreator
factoryMethod()

UML Class Diagram

association

interface interface

implementationimplementation



11/7/16 

8 

Guidelines	to	Follow	DIP	
• No	variable	should	hold	a	reference	to	a	concrete	
class	
Ø Using	new à	holding	reference	to	concrete	class	
Ø Use	factory	instead	

• No	class	should	derive	from	a	concrete	class	
Ø Why?	Depends	on	a	concrete	class	
Ø Derive	from	an	interface	or	abstract	class	instead	

• No	method	should	override	an	implemented	
method	of	its	base	class	
Ø Base	class	wasn’t	an	abstrac&on	
Ø Those	methods	are	meant	to	be	shared	by	child	classes	

Nov	11,	2016	 Sprenkle	-	CSCI209	 15	
What’s a problem with following �

all of these guidelines? 

GRAPHICS	PROGRAMMING	

Nov	11,	2016	 Sprenkle	-	CSCI209	 16	



11/7/16 

9 

Graphics Object	
• Abstract	class	

Ø Implementa&on	different	for	each	plamorm	

• A	collec&on	of	senngs	for	drawing	images	and	
text,	such	as	colors	and	fonts	

• Where used: 
Ø paintComponent(Graphics g)

Nov	11,	2016	 Sprenkle	-	CSCI209	 17	

Nov	11,	2016	 Sprenkle	-	CSCI209	 18	

Drawing	Lines,	Rectangles,	Ovals	
• Draw	ovals,	rounded	rectangles	within	bounding	
rectangle	

		

• Filled	or	outlined	(e.g.,	fillRect	vs	
drawRect)	

• Can	also	draw	arcs,	polygons,	polylines	

Starting Position of oval 
width

height

x, y



11/7/16 

10 

Colors	
• Colors	made	up	of	three	components	

Ø Red,	Green,	Blue	component	
Ø RGB	values	

• Components:	either	0	to	255	or	0.0	to	1.0	

• Color class	defines	13	color	constants	
Ø black, blue, cyan, darkGray, gray, 
green, lightGray, magenta, orange, 
pink, red, white,	and	yellow

Ø Also	defined	in	all	caps	
Ø See	API	

Nov	11,	2016	 Sprenkle	-	CSCI209	 19	

http://en.wikipedia.org/wiki/
List_of_colors

Using	Graphics object 
1.  Set	the	color/font	
2.  Draw	the	shape/string	

Nov	11,	2016	 Sprenkle	-	CSCI209	 20	

public void paintComponent(Graphics g) {

super.paintComponent(g); 
this.setBackground(Color.WHITE);

// set new drawing color using integers
g.setColor(new Color(255, 0, 0)); 
g.fillRect(15, 25, 100, 20);
g.drawString("Current RGB: " + g.getColor(), 130, 40);

…
} 



11/7/16 

11 

Understanding	Code	
	 		
	 		

• Simple	Bouncers	
Ø How	draws	
Ø How	animates	

• Screen	Savers	
Ø What	represents	an	object	in	the	screen	saver?	
Ø How	generates	screen	saver	objects?	
Ø How	handles	anima&on?	
Ø How	handles	events?	

Nov	11,	2016	 Sprenkle	-	CSCI209	 21	

Import existing Java project: 
/csdept/local/courses/cs209/handouts/
screensavers.tar.gz


