Objectives

Design Patterns

» Observer

» MVC

Dependency Inversion Principle
» Factory design pattern

» Screensavers

Nov 11, 2016 Sprenkle - CSCI209 1

Design Pattern: Observer

Defines a 1-to-many dependency between
objects

When one object changes state, all of its
dependents are notified and updated

automatically
Automatic update/

% Object
Subject 2| Object

Object that | Object
holds state Dependent Objects
Ex: Publisher Ex: Subscribers

Nov 11, 2016 Sprenkle - CSCI209 2

Have we seen this pattern?

Observer Pattern

Subject —> Observer
registerObserver() association update()
removeObserver()
notifyObservers() implementation

implementationq association
ConcreteSubject (€ ConcreteObserver
registerObserver() update()
removeObserver() //observer-specific
notifyObservers() //methods
getState()
setState()

Nov 11, 2016 Sprenkle - CSCI209

Design Principle: Loose Coupling
A principle behind Observer pattern

Goal: loosely coupled designs
between objects that interact

Loosely coupled objects can interact but have
very little knowledge of each other

Minimize dependency between objects

More flexible systems

Handle change

Nov 11, 2016 Sprenkle - CSCI209

Model - Viewer - Controller (MVC)

A common design pattern for GUIs

Separate
» Model: application data
» View: graphical representation
» Controller: input processing

. — .
Modifies Notifies
Model

Nov 11, 2016 Sprenkle - CSCI209 5

Model-Viewer-Controller

. — .
Modifies Notifies
Model

Can have multiple viewers and controllers

Goal: modify one component without affecting
others

[Controller]

Direct associations

| Model |&—{ view |

Nov 11, 2016 Sprenkle - CSCI209 6

—
MOdEI -
Model

Code that carries out some task
Nothing about how view presented to user
Purely functional

Must be able to register views and notify views
of changes

Nov 11, 2016 Sprenkle - CSCI209 7

Multiple Views

Provides GUI interface components of
model

» Look & Feel of the application

User manipulates view
» Informs controller of change

Example of multiple views: ——— |

spreadsheetdata @ ——--=-=

» Rows/columns in spreadsheet —n
> Pie chart, bar chart, ... E

Nov 11, 2016 Sprenkle - CSCI209 L’/ 8

Controller(s)

Controller

Takes user input and figures out what it means
to the model

» Makes decisions about behavior of model based on
ul

Update model as user interacts with view
» Calls model’s mutator methods

Views are associated with controllers

Nov 11, 2016 Sprenkle - CSCI209 9

Dependency Inversion Principle

Depend upon

abstractions

Nov 11, 2016 Sprenkle - CSCI209 10

Dependency Inversion Principle

High-level components should not depend on
low-level components
Both should depend on abstractions

Abstractions should not depend upon details.
Details should depend upon abstractions

“Inversion” from the way you think

Nov 11, 2016 Sprenkle - CSCI209

11

FACTORY DESIGN PATTERN

Nov 11, 2016 Sprenkle - CSCI209

12

Design Pattern: Factory Methods

Allows creating objects without specifying exact
(concrete) class of created object

Often used to refer to any method whose main
purpose is creating objects

How it works:
Define a method for creating objects

Child classes override method to specify the derived
type of product that will be created

Nov 11, 2016 Sprenkle - CSCI209 13

Factory Method Pattern

interface interface
Product Creator
factoryMethod()
anOperation()
implementation association ?mplementation
ConcreteProduct @ ConcreteCreator
factoryMethod()

UML Class Diagram

Nov 11, 2016 Sprenkle - CSCI209 14

Guidelines to Follow DIP

No variable should hold a reference to a concrete
class

Using new -> holding reference to concrete class

Use factory instead
No class should derive from a concrete class

Why? Depends on a concrete class

Derive from an interface or abstract class instead
No method should override an implemented
method of its base class

Base class wasn’t an abstraction

Those methods are meant to be shared by child classes

What'’s a problem with following

Nov 11, 2016 5 all of these guidelines?

GRAPHICS PROGRAMMING

Nov 11, 2016 Sprenkle - CSCI209 16

Graphics Object

Abstract class
Implementation different for each platform

A collection of settings for drawing images and
text, such as colors and fonts

Where used:
paintComponent(Graphics g)

Nov 11, 2016 Sprenkle - CSCI209 17

Drawing Lines, Rectangles, Ovals

Draw ovals, rounded rectangles within bounding
rectangle

Starting Position of oval
<5 Y width

height

Filled or outlined (e.g., f111Rect vs
drawRect)

Can also draw arcs, polygons, polylines

Nov 11, 2016 Sprenkle - CSCI209 18

Colors

Colors made up of three components
» Red, Green, Blue component
» RGB values
Components: either 0 to 255 or 0.0 to 1.0

Color class defines 13 color constants

»black, blue, cyan, darkGray, gray,
green, lightGray, magenta, orange,
pink, red, white,andyellow

» Also defined in all caps

» See AP http://en.wikipedia.org/wiki/

Nov 11, 2016 LiS‘t_O'F_CO].OI"S

Using Graphics object

Set the color/font
Draw the shape/string

public void paintComponent(Graphics g) {

super.paintComponent(g);
this.setBackground(Color.WHITE);

// set new drawing color using integers
g.setColor(new Color(255, @, 0));

g.fillRect(15, 25, 100, 20);

g.drawString("Current RGB: " + g.getColor(), 130, 40);

Nov 11, 2016 Sprenkle - CSCI209 20

Understanding Code

Import existing Java project:
/csdept/local/courses/cs209/handouts/
screensavers.tar.gz

Simple Bouncers
» How draws
» How animates
Screen Savers
» What represents an object in the screen saver?
» How generates screen saver objects?
» How handles animation?
» How handles events?

Nov 11, 2016 Sprenkle - CSCI209 21

