
9/10/20

1

Objectives
• Object Oriented Programming

ØConstructors
Ø Initializing object state

• Overloading constructors, methods
• Inheritance

ØOverriding methods

Sep 7, 2020 Sprenkle - CSCI209 1

1

Review
• What is black-box programming?

Ø What are the benefits of black-box programming?
Ø How does Java help enforce black-box programming?

• What is the structure of a Java class?
Ø What does it contain?
Ø What are some of the syntax rules?

• What is the process for creating a class?
• What is the Java equivalent of None?
• What is the Java equivalent of self?
• What does a variable to an object contain?

Sep 7, 2020 Sprenkle - CSCI209 2

2

9/10/20

2

Assignment 4 Review

• Is the above code correct?

Sep 7, 2020 Sprenkle - CSCI209 3

private int oneVar;

public Assign4(int par) {
oneVar = par;

}

3

Review

Sep 7, 2020 Sprenkle - CSCI209 4

Object
Object

Others can see and manipulate
object’s internals
• May have unintended

consequences

Java’s structure helps us
enforce black-box

programming

What is the problem with white-box programming?

4

9/10/20

3

Sep 7, 2020 Sprenkle - CSCI209 5

Review: Access Modifiers
• A public method (or instance field) means

that any object of any class can directly access
the method (or field)
Ø Least restrictive

• A private method (or instance field) means
that any object of the same class can directly
access this method (or field)
ØMost restrictive

• Additional access modifiers will be discussed
with inheritance

5

Review: Chicken.java

Sep 7, 2020 Sprenkle - CSCI209 6

public class Chicken {

// --------- INSTANCE VARIABLES ---------------
private String name;
private int height; // in cm
private double weight;

// --------- CONSTRUCTORS ---------------
public Chicken(String name, int h,

double weight) {
this.name = name;
this.height = h;
this.weight = weight;

}
… this: Special name for the constructed object,

like self in Python (differentiate from parameters)

Type and name for
each parameterConstructor name same as class’s name

Params don’t need to be same
names as instance var names

6

9/10/20

4

Review: Chicken.java

Sep 7, 2020 Sprenkle - CSCI209 7

…

// --------- Getter Methods ---------------
public String getName() {

return this.name;
}

// --------- Mutator Methods ---------------
public void feed() {

weight += .3;
height += 1;

}
…

}

Note that you don’t have to use this
when variables are unambiguous

Chicken object’s
instance variables

Type the method returns

7

Review: Class Development Process
1. Determine state

ØDeclare state at top of class
2. Write constructor

Ø Test
3. Repeat

ØWrite method or constructor
Ø Test

Sep 7, 2020 Sprenkle - CSCI209 8

8

9/10/20

5

Review: Object References
• Variable of type Object: value is memory location

Sep 7, 2020 Sprenkle - CSCI209 9

one =

Chicken
weight =

height =

name =

2.0

38

"Fred"

Memory
Location

Chicken one = new Chicken("Fred", 38, 2.0);

9

Sep 7, 2020 Sprenkle - CSCI209 10

Review: Object References
• Variable of type Object: value is memory location

one =

two =

If I haven’t called the constructor, only
declared the variables, e.g.,

Chicken one;
Chicken two;

Both one and two are equal to null

This is the case for objects.
Primitive types are not null.

10

9/10/20

6

Sep 7, 2020 Sprenkle - CSCI209 11

Review: Multiple Object Variables
• More than one object variable can refer to the

same object

Chicken

weight =

height =

name =

3.0

45

"Sallie Mae"

sal =

other =

Chicken sal = new Chicken("Sallie Mae");
Chicken other = sal;

11

Chicken static field example

Sep 7, 2020 Sprenkle - CSCI209 12

FARM = "McDonald"

weight =

height =

name =

2.0

38

"Fred"

weight =

height =

name =

4.5

50

"Merv"

A bunch of Chicken objects

static String FARM = "McDonald";

weight =

height =

name =

3.0

44

"Sally"

One variable shared by all members of the class.

12

9/10/20

7

MORE ON OBJECT INITIALIZATION

Sep 7, 2020 Sprenkle - CSCI209 13

13

Default Object State Initialization
• If instance field is not explicitly set in

constructor, automatically set to default value
ØNumbers set to zero
ØBooleans set to false
ØObject variables set to null
Ø Local variables are not assigned defaults

• Do not rely on defaults
ØCode is harder to understand

Sep 7, 2020 Sprenkle - CSCI209 1414

Clean Code Recommendation:
Set all instance fields in the constructor(s)

14

9/10/20

8

Sep 7, 2020 Sprenkle - CSCI209 15

Explicit Field Initialization
• If more than one constructor needs an instance

field set to same value, the field can be set
explicitly in the field declaration

class Chicken {
private String name = "";
. . .

}

Set value here for
all constructors

15

Sep 7, 2020 Sprenkle - CSCI209 16

Explicit Field Initialization
• Or in a static method call

class Employee {
private static int nextID = 0;
private int id = assignID();
. . .
private static int assignID() {

int assignedID = nextID;
nextID++;
return assignedID;

}
}

16

9/10/20

9

Sep 7, 2020 Sprenkle - CSCI209 17Sprenkle - CS209 17

Explicit Field Initialization
• Explicit field initialization happens before any

constructor runs
• A constructor can change an instance field that

was set explicitly
• If the constructor does not set the field explicitly,

explicit field initialization is used
class Chicken {

private String name = "";
public Chicken(String name, …) {

this.name = name;
…

}
…

Change explicit
field initialization

17

Sep 7, 2020 Sprenkle - CSCI209 1818

final keyword
• An instance field can be final
•final instance fields must be set in the

constructor or in the field declaration
ØCannot be changed after object is constructed

private final String dbName = "invoices";
private final String id;
…
public MyObject(String id) {

this.id = id;
}

18

9/10/20

10

More on Constructors
• A class can have more than one constructor

ØWhoa! Let that sink in for a bit

• A constructor can have zero, one, or multiple
parameters

• A constructor has no return value
• A constructor is always called with the new

operator

Sep 7, 2020 Sprenkle - CSCI209 1919

19

Constructor Overloading
• Allowing > 1 constructor (or any method) with

the same name is called overloading
ØConstraint: Each of the methods that have the same

name must have different parameters so that
compiler can distinguish between them
• “different” à Number and/or type

• Compiler handles overload resolution
ØProcess of matching a method call to the correct

method by matching the parameters
• No function overloading in Python

Sep 7, 2020 Sprenkle - CSCI209 2020overload.py
Why isn’t overloading possible in Python?

20

9/10/20

11

Default Constructor
• Default constructor: constructor with no

parameters
• If class has no constructors

ØCompiler provides a default constructor
• Sets all instance fields to their default values

• If a class has at least one constructor and no
default constructor
ØDefault constructor is NOT provided

Sep 7, 2020 Sprenkle - CSCI209 2121

21

Default Constructor
• Chicken class has one constructor:

Chicken(String name, int height, double weight)

➠No default constructor

Chicken chicken = new Chicken();
• Is a compiler error

Sep 7, 2020 Sprenkle - CSCI209 22

22

9/10/20

12

Constructors Calling Constructors
• Can call a constructor from inside another

constructor
• The first statement of constructor must be

this(. . .);
to call another constructor of the same class
Øthis refers to the object being constructed

Sep 7, 2020 Sprenkle - CSCI209 2323

Why would you want to call another constructor?

23

Constructors Calling Constructors
• Why would you call another constructor?

ØReduce code size/reduce duplicate code
• Ex: if Chicken’s name is not provided, use default

name

• Another example:

Sep 7, 2020 Sprenkle - CSCI209 2424

Chicken(int height, double weight) {
this(“Bubba”, height, weight);

}

Chicken(int height, double weight) {
this();
this.height = height;
this.weight = weight;

}

Not in example
code online

24

9/10/20

13

BASICS OF JAVA INHERITANCE

Sep 7, 2020 Sprenkle - CSCI209 25

25

Parent Class: Object
• Every new class you create automatically inherits

from the Object class
Ø See Java API

• Useful Object methods to customize your class
Ø String toString()

• Returns a string representation of the object
• Like Python’s __str__

Ø boolean equals(Object o)
• Return true iff this object and o are equivalent
• Like Python’s __eq__

Ø void finalize()
• Called when object is destroyed
• Clean up resources

Sep 7, 2020 Sprenkle - CSCI209 26

Method signature

26

9/10/20

14

toString()
• Automatically called when object is passed to print

methods
• Default implementation: Class name followed by @

followed by unsigned hexidecimal representation of
hashcode
Ø Hashcode is typically the internal address of the object
Ø Example: Chicken@163b91

• General contract:
Ø “A concise but informative representation that is easy for

a person to read”
• Your responsibility: Document the format

Sep 7, 2020 Sprenkle - CSCI209 27

27

Chicken.java toString
• What would be a good string representation of a

Chicken object?
Ø Look at output before and after toString method

implemented

Sep 7, 2020 Sprenkle - CSCI209 28

28

9/10/20

15

boolean equals(Object o)
• Procedure (Source: Effective Java)

1. Use the == operator to check if the argument is a
reference to this object

2. Use the instanceof operator to check if the
argument has the correct type
• If a variable is a null reference, then instanceof will be

false
3. Cast the argument to the correct type
4. For each “significant” field in the class, check if that

field of the argument matches the corresponding field
of this object
• For doubles, use Double.compare and for floats use

Float.compare

Sep 7, 2020 Sprenkle - CSCI209 29

How should we determine that
two Chickens are equivalent?

29

Aside
• It is not recommended that you turn the objects

into Strings (using toString) and then comparing
ØWhile the outcome may be correct, String operations

are expensive
ØBetter to compare fields directly

Sep 7, 2020 Sprenkle - CSCI209 30

30

9/10/20

16

@Override
• Annotation
• Tells compiler “This method overrides a method

in a parent class. It should have the same
signature as that method in the parent class”

• If you do not correctly override the method, then
the compiler will give you a warning

• The point: use @Override so you don’t make
silly—yet costly—mistakes

Sep 7, 2020 Sprenkle - CSCI209 31

@Override
public boolean equals(Object obj) {

31

Sep 7, 2020 Sprenkle - CSCI209 32

Encapsulation Revisited
• Encapsulation/Black-box programming

• Objects should hide their data and only allow
other objects to access this data through
accessor and mutator methods

• Common programmer mistake:
ØCreating an accessor method that returns a

reference to a mutable (changeable) object

32

9/10/20

17

Sep 7, 2020 Sprenkle - CSCI209 33

What is “bad” about this class?

public class Farm {
. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return headRooster;

}
. . .

}

33

Sep 7, 2020 Sprenkle - CSCI209 34

What is “bad” about this class?
public class Farm {

. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return headRooster;

}
. . .

}
Problem: Giving others access to Farm’s headRooster
Others can then feed your rooster or change his name!!
(Silly example; understand consequences)

34

9/10/20

18

Sept 21, 2016 Sprenkle - CSCI209 35

Fixing the Problem: Cloning
public class Farm {

. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return (Chicken) headRooster.clone();

}
. . .

}

• In previous example, could modify returned object’s state
• Another Chicken object, with the same data as headRooster,
is created and returned to the user

• If the user modifies (e.g., feeds) that object, headRooster is not
affected

Method is available to all objects
(inherited from Object)

35

Sept 21, 2016 Sprenkle - CSCI209 36

Cloning
• Cloning is a more complicated topic than it

seems from the example
ØOut of scope for this class

36

9/10/20

19

Sep 7, 2020 Sprenkle - CSCI209 37

What is “bad” about this class?
public class Farm {

. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return headRooster;

}
. . .

}
Problem: Giving others access to Farm’s headRooster
Others can then feed your rooster or change his name!!
(Silly example; understand consequences)

But, then, why is it okay to return the name, height, or weight of a chicken?
Similar to Python, primitive types and Strings are immutable.
Since those attributes have data types (String, int, double, respectively) that are
immutable, others can’t change those attributes.

37

Sep 7, 2020 Sprenkle - CSCI209 38

Review: Class Design/Organization
• Fields

ØChosen first
ØPlaced at the beginning or end of class definition
ØHave an access modifier, data type, variable name,

and some optional other modifiers
ØUse this keyword to access the object

• Constructors
• Methods

ØNeed to declare the return type
ØHave an access modifier

38

9/10/20

20

Looking Ahead
• Assignment 5 – due Friday before class

Ø Building on the Birthday class
• Overloading constructor
• Overriding methods

Ø Creating an application, practicing
• Control structures
• Using your own class
• Using classes from the Java API

Ø Good capstone for the course so far
• Brings together a lot of concepts of the last ~2 weeks

• Textbook: Continuing “Defining Classes in Java”
Ø Up to but not including “Abstract Classes and Methods”

Sep 7, 2020 Sprenkle - CSCI209 39

39

