
9/9/20

1

Objectives
• Cloning
• Garbage collection
• Parameter passing

Sep 9, 2020 Sprenkle - CSCI209 1

1

Review
• What is overriding?
• What is overloading?
• How do we make an instance variable unchangeable

after construction?
• How do we call a constructor within a constructor?
• What is the root of the Java class hierarchy?
• What method should we implement to allow pretty

printing of objects we define?
• What method should we implement for determining

if two objects are equivalent?
Sep 9, 2020 Sprenkle - CSCI209 2

2

9/9/20

2

Sep 9, 2020 Sprenkle - CSCI209 3

Review: Class Design/Organization
• Fields

ØChosen first
ØPlaced at the beginning or end of class definition
ØHave an access modifier, data type, variable name,

and some optional other modifiers
ØUse this keyword to access the object

• Constructors
• Methods

ØNeed to declare the return type
ØHave an access modifier

3

Assignment Feedback
• Why articulation of errors matters

ØDemonstrates your understanding (or lack of
understanding)

Ø You will need to discuss coding with teammates
• Why output files matter

Ø I can see if when you ran on your machine, you get
the same output I get

• Gradesheet
Ø *: expectations
Ø - or -- : problems
Ø --> Feedback (or sometimes problems)

Sep 9, 2020 Sprenkle - CSCI209 4

4

9/9/20

3

Assignment 4 Feedback
• Use JavaDocs to describe what methods and

constructors do
• Follow examples posted on course page

Ø Slide examples are often just snippets
• Omit comments and other important structure

Sep 9, 2020 Sprenkle - CSCI209 5

5

Sep 9, 2020 Sprenkle - CSCI209 6

Review: What is “bad” about this class?

public class Farm {
. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return headRooster;

}
. . .

}

6

9/9/20

4

Sep 9, 2020 Sprenkle - CSCI209 7

Review: What is “bad” about this class?
public class Farm {

. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return headRooster;

}
. . .

}

Problem: Giving others access to Farm’s headRooster.
Others can then feed your rooster or change his name!!

(Silly example; understand consequences in design)

7

Sep 9, 2020 Sprenkle - CSCI209 8

Fixing the Problem: Cloning
public class Farm {

. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return (Chicken) headRooster.clone();

}
. . .

}

• Another Chicken object, with the same data as headRooster,
is created and returned to the user
• If the user modifies (e.g., feeds) that object, headRooster is not
affected

Method is available to all objects
(inherited from Object)

8

9/9/20

5

Sep 9, 2020 Sprenkle - CSCI209 9

Cloning
• Cloning is a more complicated topic than it

seems from the example
ØOut of scope for this class

9

Sep 9, 2020 Sprenkle - CSCI209 10

What is “bad” about this class?
public class Farm {

. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return headRooster;

}
. . .

}
Problem: Giving others access to Farm’s headRooster
Others can then feed your rooster or change his name!!

(Silly example; understand consequences in design)

But, then, why is it okay to return a chicken’s name, height, or weight?
Similar to Python, primitive types and Strings are immutable.
Since those attributes have data types (String, int, double, respectively)
that are immutable, others can’t change those attributes.

10

9/9/20

6

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Sep 9, 2020 Sprenkle - CSCI209 11

1. Think (independently) for 1 minute
2. Share with your neighbor.
3. Discuss as class

11

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Sep 9, 2020 Sprenkle - CSCI209 12

baby

ed

mo

z

x

y

temp

12

9/9/20

7

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Sep 9, 2020 Sprenkle - CSCI209 13

baby

ed

mo

z

x

y

temp

13

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Sep 9, 2020 Sprenkle - CSCI209 14

baby

ed

mo

z

x

y

temp

14

9/9/20

8

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Sep 9, 2020 Sprenkle - CSCI209 15

baby

ed

mo

z

x

y

temp

15

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Sep 9, 2020 Sprenkle - CSCI209 16

Whoops! Lost “baby” chicken!
- No object variable references it
Memory leak!
Luckily Java has garbage collectors to
clean up the memory leak

baby

16

9/9/20

9

GARBAGE COLLECTION

Sep 9, 2020 Sprenkle - CSCI209 17

17

Sep 9, 2020 Sprenkle - CSCI209 18

Memory Management
• Early languages (e.g., C): free memory when

you’re done with it
• In C++ and some other OOP languages, classes

have explicit destructor methods that run when
an object is no longer in scope

• Java provides automatic garbage collection
ØWaits until there are no references to an object
ØReclaims memory allocated for the object that is no

longer referenced

Discussion: Benefits and limitations of garbage collection?

18

9/9/20

10

Sep 9, 2020 Sprenkle - CSCI209 19

Garbage Collector
• Garbage collector is low-priority thread

ØOr runs when available memory gets tight
• Before GC can clean up an object, the object may

have opened resources
Ø Ex: generated temp files or open network

connections that should be deleted/closed first
• GC calls object’s finalize() method

ØObject’s chance to clean up resources

19

Sep 9, 2020 Sprenkle - CSCI209 20

finalize()
• Inherited from java.lang.Object
• Called before garbage collector sweeps away an object

and reclaims its memory
• Should not be used for reclaiming resources

Ø i.e., close resources as soon as possible
Ø Why?

• When method is called is not deterministic or consistent
• Only know it will run sometime before garbage collection

• Clean up anything that cannot be atomically cleaned up by
the garbage collector
Ø Close file handles, network connections, database

connections, etc.
• Note: no finalizer chaining

Ø Must explicitly call parent object’s finalize method

20

9/9/20

11

Alternatives to finalize
• Recall: unknown when finalize will

execute—or if it will execute
ØAlso heavy performance cost

• Solution: create your own terminating method
ØUser of class terminates when done using object

• Examples: File’s or Window’s close method
• May still want finalize() as a safety net if

user didn’t call the terminate method
Ø Log a warning message so user knows error in code

Sep 9, 2020 Sprenkle - CSCI209 21Do you know what Python does?

21

Python Garbage Collection
• Python also does garbage collection
• Python does reference counting

Ø On each reference/dereference, update the number of
references to the object
• Can’t handle reference cycles

• Python also does generational garbage
collection to handle reference cycles

• Tradeoffs with Java’s Garbage Collection
Ø Synchronous (not asynchronous) process
Ø Cheaper memory costs than Java for keeping track of

what can be garbage collected

Sep 9, 2020 Sprenkle - CSCI209 22

1

1

1

var

01

22

9/9/20

12

PARAMETER PASSING

Sep 9, 2020 Sprenkle - CSCI209 23

23

Sep 9, 2020 Sprenkle - CSCI209 24

Method Parameters in Java
• Java always passes parameters into methods

by value
Ø Meaning: the formal parameter becomes a copy of the

argument/actual parameter’s value
Øcaller and callee have two independent variables with the

same value
Ø Consequence: Methods cannot change the variables

used as input parameters
Ø A subtle point, so we will go through several examples

• Python is something that’s not quite pass-by-
value—it depends on if the object is mutable or
immutable
Ø Pass-by-alias is one term used

24

9/9/20

13

Sep 9, 2020 Sprenkle - CSCI209 25

Method Parameters in Java
public static void main(String[] args) {

int x = 10;
int squared = square(x);
System.out.println("The square of " + x + " is " +

squared);
}

public static int square(int num) {
return num*=num;

}

Draw the stack as it changes
(similar to Python): main x 10

squared

25

Sep 9, 2020 Sprenkle - CSCI209 26

Method Parameters in Java
public static void main(String[] args) {

int x = 10;
int squared = square(x);
System.out.println("The square of " + x + " is " +

squared);
}

public static int square(int num) {
return num*=num;

}

square num 10

x 10
squared main

num copies the value of x

26

9/9/20

14

Sep 9, 2020 Sprenkle - CSCI209 27

Method Parameters in Java
public static void main(String[] args) {

int x = 10;
int squared = square(x);
System.out.println("The square of " + x + " is " +

squared);
}

public static int square(int num) {
return num*=num;

}

main x 10
squared 100

27

Sep 9, 2020 Sprenkle - CSCI209 28

What’s the Output?

public static void main(String[] args) {
int x = 27;
System.out.println(x);
doubleValue(x);
System.out.println(x);

}
public static void doubleValue(int p) {

p = p * 2;
}

1. Think (independently) for 1 minute
2. Share with your neighbor.
3. Discuss as class

28

9/9/20

15

Sep 9, 2020 Sprenkle - CSCI209 29

What’s the Output?

27
27

public static void main(String[] args) {
int x = 27;
System.out.println(x);
doubleValue(x);
System.out.println(x);

}
public static void doubleValue(int p) {

p = p * 2;
}

main x 27

square p 27

29

Sep 9, 2020 Sprenkle - CSCI209 30

What’s the Output?

27
27

public static void main(String[] args) {
int x = 27;
System.out.println(x);
doubleValue(x);
System.out.println(x);

}
public static void doubleValue(int p) {

p = p * 2;
}

main x 27

square p 54

30

9/9/20

16

public static void main(String[] args) {
int x = 27;
System.out.println(x);
doubleValue(x);
System.out.println(x);

}
public static void doubleValue(int p) {

p = p * 2;
}

Sep 9, 2020 Sprenkle - CSCI209 31

What’s the Output?

27
27

main x 27

31

Pass by Value: Objects
• Primitive types are a little more obvious

ØCan’t change original variable
• For objects, passing a copy of the parameter

looks like

Sep 9, 2020 Sprenkle - CSCI209 32

public void methodName(Chicken c)

methodName(chicken);

chicken =

c =
height =

name =

38

“Fred”

weight =

height =

name =

3.0

45

“Sallie Mae”

x00FFBB

x00FFBB

Pass Chicken object to methodName when calling method

32

9/9/20

17

Pass by Value: Objects
• What happens in this case?

Sep 9, 2020 Sprenkle - CSCI209 33

public void methodName(Chicken c) {
if(c.getWeight() < MIN) {

c.feed();
}
…

}

methodName(chicken);

chicken =

c =
height =

name =

38

“Fred”

weight =

height =

name =

3.0

45

“Sallie Mae”

x00FFBB

x00FFBB

Can the Chicken
object be changed
in calling method?

33

Pass by Value: Objects
• What happens in this case?

Sep 9, 2020 Sprenkle - CSCI209 34

public void methodName(Chicken c) {
if(c.getWeight() < MIN) {

c.feed();
}
…

}

chicken =

c =
height =

name =

38

“Fred”

weight =

height =

name =

3.0

45

“Sallie Mae”

x00FFBB

x00FFBB

Can the Chicken object
be changed in calling
method?
YES! Both chicken
and c are pointing to the
same Chicken object

methodName(chicken);

34

9/9/20

18

Sep 9, 2020 Sprenkle - CSCI209 35

What’s the Output?
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23.2);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {

c.setWeight(c.getWeight() + .5);
}

35

Sep 9, 2020 Sprenkle - CSCI209 36

What’s the Output?
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23.2);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {

c.setWeight(c.getWeight() + .5);
}

23.2
23.7

36

9/9/20

19

Sep 9, 2020 Sprenkle - CSCI209 37

What’s the Output?
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23.2);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {

c = new Chicken(c.getName(), c.getWeight(),
c.getHeight());

c.setWeight(c.getWeight() + .5);
}

37

Sep 9, 2020 Sprenkle - CSCI209 3838

Tracing through Execution
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23.2);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .
// From Farm class
public void feedChicken(Chicken c) {

c = new Chicken(c.getName(), c.getWeight(),
c.getHeight());

c.setWeight(c.getWeight() + .5);
}

sal =

c =
height =

name =

38

“Fred”

weight =

height =

name =

5

23.2

“Sallie Mae”

x00FFBB

x00FFBB

c copies the value of sal

38

9/9/20

20

Sep 9, 2020 Sprenkle - CSCI209 3939

Tracing through Execution
public void feedChicken(Chicken c) {

c = new Chicken(c.getName(), c.getWeight(),
c.getHeight());

c.setWeight(c.getWeight() + .5);
}

sal =

c =

height =

name =

38

“Fred”

weight =

height =

name =

5

23.2

"Sallie Mae"

x00FFBB

x0AFFBF

height =

name =

38

“Fred”

weight =

height =

name =

5

23.2

"Sallie Mae"
A new Chicken object is created (at
a new memory address). c is
assigned to/references that object.

39

Sep 9, 2020 Sprenkle - CSCI209 4040

Tracing through Execution
public void feedChicken(Chicken c) {

c = new Chicken(c.getName(), c.getWeight(),
c.getHeight());

c.setWeight(c.getWeight() + .5);
}

sal =
height =

name =

38

“Fred”

weight =

height =

name =

5

23.2

"Sallie Mae"

x00FFBB

height =

name =

38

“Fred”

weight =

height =

name =

5

23.7

"Sallie Mae"

c = x0AFFBF

The object that c references is
updated; the object that sal
references is unaffected

40

9/9/20

21

Sep 9, 2020 Sprenkle - CSCI209 4141

Tracing through Execution
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23.2);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .
// From Farm class
public void feedChicken(Chicken c) {

c = new Chicken(c.getName(), c.getWeight(),
c.getHeight());

c.setWeight(c.getWeight() + .5);
}

sal =
height =

name =

38

“Fred”

weight =

height =

name =

5

23.2

“Sallie Mae”

x00FFBB

23.2
23.2

41

Sep 9, 2020 Sprenkle - CSCI209 42

Summary of Method Parameters
• Everything is passed by value in Java

• An object variable (not an object) is passed into
a method
ØChanging the state of an object in a method changes

the state of object outside the method
ØMethod does not see a copy of the original object

42

9/9/20

22

Looking Ahead
• Assignment 5 – due Friday before class

ØBuilding on the Birthday class
• Overloading constructor
• Overriding methods

ØCreating an application, practicing
• Control structures
• Using your own class
• Using classes from the Java API

• Office Hours until 12:30
Ø Email me for other appointment times

Sep 9, 2020 Sprenkle - CSCI209 43

43

