
10/7/20

1

Objectives
• Inheritance

ØPolymorphism
ØDynamic dispatch

Sep 11, 2020 Sprenkle - CSCI209 1

1

Review
• We would like to return a private variable from a

public method
ØWhy could that be a problem?
ØHow should we implement that method?

• How does Java handle memory management?
ØWhat are the benefits and limitations of that

approach?

• How does Java pass parameters?
ØWhat are the consequences of that choice? (How

does that affect how we call methods?)
Sep 11, 2020 Sprenkle - CSCI209 2

2

10/7/20

2

Sep 9, 2020 Sprenkle - CSCI209 3

Review: Providing Private Data
public class Farm {

. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return (Chicken) headRooster.clone();

}
. . .

}

• Another Chicken object, with the same data as headRooster,
is created and returned to the user
• If the user modifies (e.g., feeds) that object, headRooster is not
affected

Method is available to all objects
(inherited from Object)

3

Review: Garbage Collection

Benefits
• Programmer doesn’t need

to worry about memory
management

• Cleans up unused memory
automatically, eventually

• Programmer can never
release memory that is then
accessed (a.k.a. seg faults)

Drawbacks
• Programmer doesn’t worry

about memory
management
Ø May not be as careful to

avoid memory leaks

• Memory could be cleaned
up sooner

• Requires resources (CPU,
memory) to keep track of
memory

• Slows program execution

Sep 11, 2020 Sprenkle - CSCI209 4

4

10/7/20

3

Review: Garbage Collection

Benefits
• Programmer doesn’t need

to worry about memory
management

• Cleans up unused memory
automatically, eventually

• Programmer can never
release memory that is then
accessed (a.k.a. seg faults)

Drawbacks
• Programmer doesn’t worry

about memory
management
Ø May not be as careful to

avoid memory leaks

• Memory could be cleaned
up sooner

• Requires resources (CPU,
memory) to keep track of
memory

• Slows program execution

Sep 11, 2020 Sprenkle - CSCI209 5

• Programmer time is more valuable
than computer resources.

• Less buggy code is preferred to
more efficient code.

5

Sep 11, 2020 Sprenkle - CSCI209 6

Review: Method Parameters in Java
• Java always passes parameters into methods

by value
ØMeaning: the formal parameter becomes a copy of

the argument/actual parameter’s value
ØMethod caller and callee have two independent

variables with the same value
ØConsequence: Methods cannot change the variables

used as input parameters

6

10/7/20

4

Review: Pass by Value - Objects
• Primitive types are a little more obvious

ØCan’t change passed-in variable
• For objects, passing a copy of the parameter

looks like

Sep 11, 2020 Sprenkle - CSCI209 7

public void methodName(Chicken c)

methodName(chicken);

chicken =

c =
height =

name =

38

“Fred”

weight =

height =

name =

3.0

45

“Sallie Mae”

x00FFBB

x00FFBB

Pass Chicken object to methodName when calling method

7

Review: Pass by Value: Objects
• What happens in this case?

Sep 11, 2020 Sprenkle - CSCI209 8

public void methodName(Chicken c) {
if(c.getWeight() < MIN) {

c.feed();
}
…

}

chicken =

c =
height =

name =

38

“Fred”

weight =

height =

name =

3.0

45

“Sallie Mae”

x00FFBB

x00FFBB

Can the Chicken object
be changed in calling
method?
YES! Both chicken
and c are pointing to the
same Chicken object

methodName(chicken);

8

10/7/20

5

Sep 11, 2020 Sprenkle - CSCI209 9

Review: Summary of Method Parameters

• Everything is passed by value in Java
Ø Formal parameter copies the actual parameter

• An object variable (not an object) is passed into
a method
ØChanging the state of an object in a method changes

the state of object outside the method
ØMethod does not see a copy of the original object

9

INHERITANCE

Sep 11, 2020 Sprenkle - CSCI209 10

10

10/7/20

6

Review: Inheritance (from CSCI112)
• What are the benefits of inheritance?
• What are examples of inheritance?
• When should you use inheritance?

Sep 11, 2020 Sprenkle - CSCI209 11

11

Sep 11, 2020 Sprenkle - CSCI209 12

Inheritance
• Build new classes based on existing classes

ØAllows code reuse
• Start with a class (parent or super class)
• Create another class that extends or specializes

the class
ØCalled the child, subclass, or derived class
ØUse extends keyword to make a subclass

12

10/7/20

7

Sep 11, 2020 Sprenkle - CSCI209 13

Child class
• Inherits all of parent class’s methods and fields

Ø Note on private fields: all are inherited, just can’t
access

• Constructors are not inherited
• Can override methods

Ø Recall: overriding - methods have the same name and
parameters, but implementation is different

• Can add methods or fields for additional
functionality

• Use super object to call parent’s method
Ø Even if child class redefines parent class’s method

13

Sep 11, 2020 Sprenkle - CSCI209 14

Rooster class
• Could write class from scratch, but …
• A rooster is a chicken

ØBut it adds something to (or specializes) what a
chicken is/does

• Classic mark of inheritance: is a relationship
• Rooster is child class
• Chicken is parent class

14

10/7/20

8

Sep 11, 2020 Sprenkle - CSCI209 15

Access Modifiers
•public

ØAny class can access
•private

ØNo other class can access (including child classes)
• Must use parent class’s public accessor/mutator

methods

•protected
ØChild classes can access
ØMembers of package can access
ØOther classes cannot access

15

Access Modes

Accessible to Member Visibility
public protected package private

Defining class Yes Yes Yes Yes
Class in same
package

Yes Yes Yes No

Subclass in
different package

Yes Yes No No

Non-subclass
different package

Yes No No No

Sep 11, 2020 Sprenkle - CSCI209 16

Default (if none specified)

• Visibility for variables: who can access/change
• Visibility for methods: who can call

16

10/7/20

9

protected
• Accessible to subclasses and members of

package
• Can’t keep encapsulation “pure”

ØDon’t want others to access fields directly
ØMay break code if you change your implementation

• Assumption?
Ø Someone extending your class with protected access

knows what they are doing

Sep 11, 2020 Sprenkle - CSCI209 17

17

Sep 11, 2020 Sprenkle - CSCI209 18

Access Modifiers
• If you're uncertain which to use (protected,

package, or private), use the most restrictive
ØChanging to less restrictive later à easy
ØChanging to more restrictive à may break code that

uses your classes

18

10/7/20

10

Changes to Chicken Class
• Added a new instance variable called is_female
• Added getter and setter for is_female
• Updated toString, equals methods accordingly

• 2 Chicken classes in examples
ØChicken.java private instance variables
ØChicken2.java protected instance variables

Sep 11, 2020 Sprenkle - CSCI209 19

19

Sep 11, 2020 Sprenkle - CSCI209 20

Rooster class
public class Rooster extends Chicken {

public Rooster(String name,
int height, double weight) {
// all instance fields inherited
// from super class
this.name = name;
this.height = height;
this.weight = weight;
this.is_female = false;

}

// new functionality
public void crow() {… }
…

By default calls default
super constructor with

no parameters

extends means that Rooster
is a child of Chicken

(not one of the examples
posted online)

20

10/7/20

11

Sep 11, 2020 Sprenkle - CSCI209 21

Rooster class
public class Rooster extends Chicken {

public Rooster(String name,
int height, double weight) {

super(name, height, weight, false);
}

// new functionality
public void crow() { … }

…
}

Call to super constructor must be first statement in constructor

21

Sep 11, 2020 Sprenkle - CSCI209 22

Constructor Chaining
• Constructor automatically calls constructor of

parent class if not done explicitly
Øsuper();

• What if parent class does not have a constructor
with no parameters?
ØCompilation error
Ø Forces child classes to call a constructor with

parameters

22

10/7/20

12

Sep 11, 2020 Sprenkle - CSCI209 23

Overriding and New Methods
public class Rooster extends Chicken {

…

// overrides superclass; greater gains
@Override
public void feed() {

weight += .5;
height += 2;

}

// new functionality
public void crow() {

System.out.println("Cocka-Doodle-Doo!");
}

}

Same method signature
as parent class

Specializes the class

23

Sep 11, 2020 Sprenkle - CSCI209 24

Inheritance Tree: Constructor Chaining
•java.lang.Object

ØChicken
•Rooster

• Call parent class’s constructor
first
ØKnow you have fields of parent

class before implementing
constructor for your class

Object

Chicken

Rooster

1

2

24

10/7/20

13

Sep 11, 2020 Sprenkle - CSCI209 25

Inheritance Tree
•java.lang.Object

ØChicken
•Rooster

• No finalize() chaining
Ø Should call super.finalize()

inside of finalize method

Object

Chicken

Rooster

25

Sep 11, 2020 Sprenkle - CSCI209 26

Shadowing Parent Class Fields
• Child class has field with same name as parent

class
Ø You probably shouldn’t be doing this
ØBut could happen

• Examples: more precision for a constant (or more
weight gain for a rooster)

field // this class's field
this.field // this class's field
super.field // super class's field

26

10/7/20

14

Sep 11, 2020 Sprenkle - CSCI209 27

Multiple Inheritance
• In Python, a class can inherit more than one

parent class
ØChild class has the fields from both parent classes

• This is NOT possible in Java.
ØA class may extend (or inherit from) only one class

27

POLYMORPHISM & DISPATCH

Sep 11, 2020 Sprenkle - CSCI209 28

28

10/7/20

15

Sep 11, 2020 Sprenkle - CSCI209 29

Polymorphism
• Polymorphism is the ability for an object to vary

behavior based on its type
• You can use a child class object whenever the

program expects an object of the parent class
• Object variables are polymorphic
• A Chicken object variable can refer to an object

of class Chicken, Rooster, Hen, or any class
that inherits from Chicken

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

We can guess the actual types
But compiler can’t

29

Sep 11, 2020 Sprenkle - CSCI209 30

Compiler’s Behavior

•We know chickens[1] is probably a
Rooster, but to compiler, it’s a Chicken so
chickens[1].crow(); will not compile

Chicken[] chickens = new Chicken[3];
chickens[0] = momma; // a Hen
chickens[1] = foghorn; // a Rooster
chickens[2] = baby; // a Chicken

30

10/7/20

16

Sep 11, 2020 Sprenkle - CSCI209 31

Compiler’s Behavior
• When we refer to a Rooster object through a
Rooster object variable,
compiler sees it as a Rooster object

• If we refer to a Rooster object through a
Chicken object variable,
compiler sees it as a Chicken object.

• We cannot assign a parent class object to a child
class object variable
Ø Ex: Rooster is a Chicken, but a Chicken is not

necessarily a Rooster
Rooster r = chicken;

à Object variable determines how compiler sees object.

31

Sep 11, 2020 Sprenkle - CSCI209 32

Polymorphism

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

chickens[1].feed();

Compiles because Chicken has a feed method.

But, which feed method is called –
Chicken’s or Rooster’s?

32

10/7/20

17

Sep 11, 2020 Sprenkle - CSCI209 33

Polymorphism
• Which method do we call when we call

chicken[1].feed()
Rooster’s or Chicken’s?

• In Java (and Python): Rooster’s!
ØObject is a Rooster
Ø JVM figures out object’s class at runtime and runs

the appropriate method
• Dynamic dispatch

ØAt runtime, the object’s class is determined
ØAppropriate method for that class is dispatched

33

Sep 11, 2020 Sprenkle - CSCI209 34

Feed the Chickens!

• Dynamic dispatch calls the appropriate method
in each case, corresponding to the actual class of
each object
Ø This is the power of polymorphism and dynamic

dispatch!

for(Chicken c: chickens) {
c.feed();

}
How to read this code?
What happens in execution?

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

Recall:

Think on your own for 1 minute

34

10/7/20

18

Sep 11, 2020 Sprenkle - CSCI209 35

Dynamic Dispatch vs. Static Dispatch
• Dynamic dispatch is not necessarily a property of

object-oriented programming in general
• Some OOP languages use static dispatch

Ø Type of the object variable that the method is called on
determines which version of method gets run

• The primary difference is when decision on which
method to call is made…
Ø Static dispatch (C#) decides at compile time
Ø Dynamic dispatch (Java, Python) decides at run time

• Dynamic dispatch is slower
Ø In mid to late 90s, active research on how to decrease

time

35

What Will This Code Output?

Sep 11, 2020 Sprenkle - CSCI209 36

class Parent {
public Parent() {}

public void method1() {
System.out.println("Parent: method1");

}

public void method2() {
System.out.println("Parent: method2");
method1();

}
}

class Child extends Parent {
public Child() {}

public void method1() {
System.out.println("Child: method1");

}
}

public class DynamicDispatchExample {
public static void main(String[] args) {

Parent p = new Parent();
Child c = new Child();

p.method1();
System.out.println("");

c.method1();
System.out.println("");

p.method2();
System.out.println("");

c.method2();
System.out.println("");

}
}

See handout

Think on your own for 1 minute

36

10/7/20

19

What Will This Code Output?

Sep 11, 2020 Sprenkle - CSCI209 37

class Parent {
public Parent() {}

public void method1() {
System.out.println("Parent: method1");

}

public void method2() {
System.out.println("Parent: method2");
method1();

}
}

class Child extends Parent {
public Child() {}

public void method1() {
System.out.println("Child: method1");

}
}

public class DynamicDispatchExample {
public static void main(String[] args) {

Parent p = new Parent();
Child c = new Child();

p.method1();
System.out.println("");

c.method1();
System.out.println("");

p.method2();
System.out.println("");

c.method2();
System.out.println("");

}
}

See handout

Parent: method1

Child: method1

Parent: method2
Parent: method1

Parent: method2
Child: method1

37

Sep 11, 2020 Sprenkle - CSCI209 38

Inheritance Rules: Access Modifiers

• Why?
• What would happen if a method in the parent

class is public but the child class’s method is
private?

Access modifiers in child classes
• Can make access to child class less restrictive but

not more restrictive

38

10/7/20

20

Sep 11, 2020 Sprenkle - CSCI209 39

Inheritance Rules: Access Modifiers

• If a public method could be overridden as a protected
or private method, child objects would not be able to
respond to the same method calls as parent objects

• When a method is declared public in the parent, the
method remains public for all that class’s child classes

• Remembering the rule: compiler error to override a
method with a more restricted access modifier

Access modifiers in child classes
• Can make access to child class less restrictive but

not more restrictive

39

Sep 11, 2020 Sprenkle - CSCI209 40

Summary of Inheritance
• Remove repetitive code by modeling the “is-a”

hierarchy
ØMove “common denominator” code up the

inheritance chain
• Don’t use inheritance unless all inherited

methods make sense
• Use polymorphism

40

10/7/20

21

Assignment 6
• Start of a simple video game

Ø Game class to run
Ø GamePiece is parent class of other moving objects

• Some less-than-ideal design
Ø Can’t fix until see other Java structures (Monday)

• Don’t need to understand all of the code (yet), just
some of it

• Create a Goblin class and a Treasure class
Ø Move Goblin and Treasure

• Due Wednesday

Sep 11, 2020 Sprenkle - CSCI209 41

41

