
9/14/20

1

Objectives
• Packages
• Final
• Abstract Classes
• Interfaces

Sep 14, 2020 Sprenkle - CSCI209 1

1

Sep 14, 2020 Sprenkle - CSCI209 2

Review
• How does Java pass parameters?
• How do we make a class inherit from a parent class?
• How does a class refer to its parent class?
• What does a class inherit from its parent class?

Ø What is not inherited?
• What are the access modifiers, ordered from least 

restrictive to most restrictive?
• How can we verify that an object variable is a certain 

type?
• How can we specify that an object variable has a different 

type (e.g., a derived type)?
• How does Java decide which method to call on an object?

Ø Example: chicken[1].feed();

2



9/14/20

2

Review
• Designing classes: When should you make a 

variable/field
Ø Local vs instance vs static?
ØPrivate vs protected vs public?

• Inheritance in game code
Ø Javadocs

Sep 14, 2020 Sprenkle - CSCI209 3

3

Sep 14, 2020 Sprenkle - CSCI209 4

Summary of Inheritance
• Remove repetitive code by modeling the “is-a”

hierarchy
ØMove “common denominator” code up the 

inheritance chain
• Don’t use inheritance unless all inherited 

methods make sense
• Use polymorphism

4



9/14/20

3

PACKAGES

Sep 14, 2020 Sprenkle - CSCI209 5

5

Sep 14, 2020 Sprenkle - CSCI209 6

Review: Packages
• Hierarchical structure of Java classes

ØDirectories of directories

• Use import to access packages

java

net

lang

util

Object

Date

Fully qualified name: java.lang.String

String

6



9/14/20

4

Review: Importing Packages
• Can import one class at a time or all the classes 

within a package
• Examples: 

Ø* form may increase compile time
• BUT, no effect on run-time performance

Sep 14, 2020 Sprenkle - CSCI209 7

import java.util.Date;
import java.io.*; Import entire package

7

Standard Practice
• To reduce chance of a conflict between names of classes, 

put classes in packages
• Use package keyword to say that a class belongs to a 

package:
Ø package java.util;
Ø First line in class file

• Typically, use a unique prefix, similar to domain names
Ø com.ibm
Ø edu.wlu.cs.logic

• Organize code by the packages
Ø For example, code in edu.wlu.cs.logic package would be in a 
logic directory inside a cs directory inside a wlu directory 
inside a logic directory

Sep 14, 2020 Sprenkle - CSCI209 8We will start organizing our code in packages soon

8



9/14/20

5

FINAL KEYWORD

Sep 14, 2020 Sprenkle - CSCI209 9

9

Sep 14, 2020 Sprenkle - CSCI209 10

Preventing Inheritance
• Sometimes, you do not want a class to derive from one 

of your classes
• A class that cannot be extended is known as a final 

class
• To make a class final, simply add the keyword final 

in front of the class definition:

• Example of final class: System

public final class Rooster extends Chicken { 
. . . 

}

10



9/14/20

6

Sep 14, 2020 Sprenkle - CSCI209 11

Final methods
• Can make a method final

ØAny class derived from this class cannot override the 
final methods

• By default, all methods in a final class are 
final methods.

class Chicken {
. . . 
public final String getName() { . . . }
. . . 

}

Why would we want to make methods final?
What are possible benefits to us, the compiler, …?

11

ABSTRACT CLASSES

Sep 14, 2020 Sprenkle - CSCI209 12

12



9/14/20

7

Sep 14, 2020 Sprenkle - CSCI209 13

Abstract Classes
• Classes in which not all methods are implemented 

are abstract classes
Ø public abstract class ZooAnimal

• Some methods defined, others not defined
Ø Partial implementation

• Blank (unimplemented) methods are labeled as 
abstract
Ø public abstract void 
exercise(Environment env);

13

Sep 14, 2020 Sprenkle - CSCI209 14

Abstract Classes
• An abstract class cannot be instantiated

Ø i.e., can’t create an object of that class
ØBut can have a constructor!

• Child class of an abstract class can only be 
instantiated if it overrides and implements every 
abstract method of parent class
Ø If child class does not override all abstract methods, 

it is also abstract

14



9/14/20

8

Sep 14, 2020 Sprenkle - CSCI209 15

Abstract Classes
•static, private, and final methods 

cannot be abstract
ØB/c cannot be overridden by a child class

•final class cannot contain abstract methods

• A class can be abstract even if it has no abstract 
methods
ØUse when implementation is incomplete and is 

meant to serve as a parent class for class(es) that 
complete the implementation

• Can have array of objects of abstract class
Ø JVM will do dynamic dispatch for methods

Why?

ZooAnimal[] animals = new ZooAnimals[10];

15

Sep 14, 2020 Sprenkle - CSCI209 16

Examples of abstract classes
• Example 1:

Øjava.net.Socket
Øjava.net.ssl.SSLSocket (abstract)

• Example 2:
Øjava.util.Calendar (abstract)
Øjava.util.GregorianCalendar

16



9/14/20

9

Sep 14, 2020 Sprenkle - CSCI209 17

Summary: Defining Abstract Classes
➨Define a class as abstract when class has 

partial implementation

17

INTERFACES

Sep 14, 2020 Sprenkle - CSCI209 18

18



9/14/20

10

Sep 14, 2020 Sprenkle - CSCI209 19

Interfaces
• Pure specification, no implementation

ØA set of requirements for classes to conform to

• Classes can implement one or more interfaces

19

Sep 14, 2020 Sprenkle - CSCI209 20

Example of an Interface
• We can call Arrays.sort(array)

• Arrays.sort sorts arrays of any object class that 
implements the Comparable interface

• Classes that implement Comparable must 
provide a way to decide if one object is less than, 
greater than, or equal to another object

20



9/14/20

11

Sep 14, 2020 Sprenkle - CSCI209 21

java.lang.Comparable

• Any object that is (inherits) Comparable must 
have a method named compareTo()

• Returns:
Ø Return a negative integer if this object is less than the 

object passed as a parameter
Ø Return a positive integer if this object is greater than the 

object passed as a parameter 
Ø Return a 0 if the two objects are equal

public interface Comparable {
int compareTo(Object other);

}

21

Sep 14, 2020 Sprenkle - CSCI209 22

Comparable Interface API/Javadoc
• Specifies what the compareTo() method should 

do
• Says which Java library classes implement 
Comparable

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/
java/lang/Comparable.html

22



9/14/20

12

Sep 14, 2020 Sprenkle - CSCI209 23

Implementing an Interface
• In the class definition, specify that the class will 
implement the specific interface

• Provide a definition for all methods specified in 
interface

public class Chicken implements Comparable

How to determine Chicken order?

23

Sep 14, 2020 Sprenkle - CSCI209 24

Comparable Chickens
One way: order by height 

What if otherObject is not a Chicken?

public class Chicken implements Comparable {
. . . 
public int compareTo(Object otherObject) {

Chicken other = (Chicken)otherObject;
if (height < other.getHeight() )

return –1;
if (height > other.getHeight())

return 1;
return 0;
// simpler: return height-other.getHeight()

}
}

24



9/14/20

13

Sep 14, 2020 Sprenkle - CSCI209 25

Testing for Interfaces

• Can also use the instanceof operator to 
see if an object implements an interface
Ø e.g., to determine if an object can be compared to 

another object using the Comparable interface

if (obj instanceof Comparable) { 
// runs if obj is an object variable of a class
// that implements the Comparable interface

}
else {

// runs if it does not implement the interface 
}

25

Sep 14, 2020 Sprenkle - CSCI209 26

Interface Object Variables
• Can use an object variable to refer to an object of any 

class that implements an interface
• Using this object variable, can only access the 

interface’s methods
• For example…

public void aMethod(Object obj) {
…
if (obj instanceof Comparable) {

Comparable comp = (Comparable) obj;
boolean res = comp.compareTo(obj2);

}
}

26



9/14/20

14

Sep 14, 2020 Sprenkle - CSCI209 27

Interface Definitions

• Interface methods are public by default
Ø Do not need to specify methods as public

public interface Comparable {
int compareTo(Object other);

}

27

Sep 14, 2020 Sprenkle - CSCI209 28

Interface Definitions and Inheritance
• Can extend interfaces

ØAllows a chain of interfaces that go from general to 
more specific

• For example, define an interface for an object 
that is capable of moving:

public interface Movable {
void move(double x, double y);

}

28



9/14/20

15

Sep 14, 2020 Sprenkle - CSCI209 29

Interface Definitions and Inheritance
• A powered vehicle is also Movable

ØMust also have a milesPerGallon() method, 
which will return its gas mileage

public interface Powered extends Movable {
double milesPerGallon();

}

29

Sep 14, 2020 Sprenkle - CSCI209 30

Constants in an Interface
• If a variable is specified in an interface, it is 

automatically a constant:
Øpublic static final variable

• An object that implements Powered
interface has a constant SPEED_LIMIT
defined

public interface Powered extends Movable {
double milesPerGallon();
double SPEED_LIMIT = 95;

}

30



9/14/20

16

Sep 14, 2020 Sprenkle - CSCI209 31

Interface Definitions and Inheritance
•Powered interface extends Movable interface
• An object that implements Powered interface 

must satisfy all requirements of that interface as 
well as the parent interface.
ØA Powered object must have a 
milesPerGallon() and move() method

31

Sep 14, 2020 Sprenkle - CSCI209 32

Multiple Interfaces
• A class can implement multiple interfaces

ØMust fulfill the requirements of each interface

• But NOT possible with inheritance
ØA class can only extend (or inherit from) one class

public final class String implements
Serializable, Comparable, CharSequence { …

32



9/14/20

17

Sep 14, 2020 Sprenkle - CSCI209 33

Benefits of Interfaces
• Abstraction

Ø Separate the interface from the implementation

• Allow easier type substitution
ØWe’ll see this with Collections

• Can implement multiple interfaces

33

Sep 14, 2020 Sprenkle - CSCI209 34

Interface Summary
• Contain only object (not class) methods
• All methods are public

Ø Implied if not explicit
• Fields are constants that are static and 
final

• A class can implement multiple interfaces
Ø Separated by commas in definition

34



9/14/20

18

Compare Interfaces and Abstract Classes

Sep 14, 2020 Sprenkle - CSCI209 35

• Summarize characteristics of each.
• Then discuss when should we use 

an interface or an abstract class.

35

Using an Interface or Abstract Class

üAny class can use
ü Can implement multiple 

interfaces
• No implementation
- Implementing methods 

multiple times
- Adding a method to 

interface will break classes 
that implement

• Contain partial 
implementation

- Can’t extend/subclass 
multiple classes

üAdd non-abstract methods 
without breaking 
subclasses 

Sep 14, 2020 Sprenkle - CSCI209 36

Interfaces Abstract Classes

36



9/14/20

19

Sep 14, 2020 Sprenkle - CSCI209 37

One Option: Use Both!
• Define interface, e.g., MyInterface
• Define abstract class, e.g., 
AbstractMyInterface
Ø Implements interface
ØProvides implementation for some methods

37

Abstract Classes and Interfaces
• Important structures in Java

ØMake code easier to change

• Will return to/apply these ideas throughout the 
course

• Concepts are used in many languages besides 
Java

Sep 14, 2020 Sprenkle - CSCI209 38

38



9/14/20

20

Looking Ahead
• Assignment 6: Goblin Game

ØCan now do the refactoring part
ØDue Wednesday before class

Sep 14, 2020 Sprenkle - CSCI209 39

39


