Objectives

® Packages
® Final
® Abstract Classes

® |nterfaces

Sep 14, 2020 Sprenkle - CSCI209 1

Review

How does Java pass parameters?

How do we make a class inherit from a parent class?

How does a class refer to its parent class?

What does a class inherit from its parent class?
What is not inherited?

® What are the access modifiers, ordered from least
restrictive to most restrictive?

* How can we verify that an object variable is a certain
type?
® How can we specify that an object variable has a different
type (e.g., a derived type)?
® How does Java decide which method to call on an object?
Example: chicken[1].feed();

Sep 14, 2020 Sprenkle - CSCI209 2




Review

® Designing classes: When should you make a

variable/field

Local vs instance vs static?
Private vs protected vs public?

® Inheritance in game code
Javadocs

Sep 14, 2020 Sprenkle - CSCI209

Summary of Inheritance

® Remove repetitive code by modeling the “is-a

hierarchy

Move “common denominator” code up the
inheritance chain

® Don’t use inheritance unless all inherited
methods make sense

® Use polymorphism

Sep 14, 2020 Sprenkle - CSCI209

n




PACKAGES

Sep 14, 2020 Sprenkle - CSCI209 5

Review: Packages

® Hierarchical structure of Java classes
Directories of directories
java
— Lang
':Object
String

— net Fully qualified name: java. lang.String

— util
- Date

® Use import to access packages

Sep 14, 2020 Sprenkle - CSCI209 6




Review: Importing Packages

® Can import one class at a time or all the classes
within a package

® Examples:

import java.util.Date;

import java.10.%; e Import entire package

* form may increase compile time
® BUT, no effect on run-time performance

Sep 14, 2020 Sprenkle - CSCI209 7

Standard Practice

® To reduce chance of a conflict between names of classes,
put classes in packages

* Use package keyword to say that a class belongs to a
package:
package java.util;
First line in class file
® Typically, use a unique prefix, similar to domain names
com.ibm
edu.wlu.cs.logic
® QOrganize code by the packages

For e'xample, code in edu.wlu.cs.logic package would be in a
logic direc’gory inside a CS directory inside a wlLu directory
inside a Log1c directory

Sep 14, 2020 We will start organizing our code in packages soon




FINAL KEYWORD

Sep 14, 2020 Sprenkle - CSCI209 9

Preventing Inheritance

® Sometimes, you do not want a class to derive from one
of your classes

® A class that cannot be extended is known as a final
class

® To make a class final, simply add the keyword final
in front of the class definition:

public final class Rooster extends Chicken {

}
e Example of final class: System

Sep 14, 2020 Sprenkle - CSCI209 10

10




Final methods

® Can make a method final

Any class derived from this class cannot override the
final methods

class Chicken {
buﬁlic final String getName() { . . . }
ks

® By default, all methods ina final class are
final methods.

Why would we want to make methods final?
Sep 14, 2020 What are possible benefits to us, the compiler; ...?

11

ABSTRACT CLASSES

Sep 14, 2020 Sprenkle - CSCI209 12

12




Abstract Classes

® Classes in which not all methods are implemented
are abstract classes

public abstract class ZooAnimal

® Some methods defined, others not defined
Partial implementation

® Blank (unimplemented) methods are labeled as
abstract

public abstract void
exercise(Environment env);

Sep 14, 2020 Sprenkle - CSCI209 13

13

Abstract Classes

® An abstract class cannot be instantiated

i.e., can’t create an object of that class
But can have a constructor!

® Child class of an abstract class can only be
instantiated if it overrides and implements every
abstract method of parent class

If child class does not override all abstract methods,
it is also abstract

Sep 14, 2020 Sprenkle - CSCI209 14

14



Abstract Classes

®static, private, and final methods
cannot be abstract

B/c cannot be overridden by a child class
® final class cannot contain abstract methods
Why?

® A class can be abstract even if it has no abstract
methods

Use when implementation is incomplete and is
meant to serve as a parent class for class(es) that
complete the implementation

® Can have array of objects of abstract class
JVM will do dynamic dispatch for methods
ZooAnimal[] animals = new ZooAnimals[10];

Sep 14, 2020 Sprenkle - CSCI209 15

15

Examples of abstract classes

® Example 1:
java.net.Socket
java.net.ssl.SSLSocket (abstract)
® Example 2:
java.util.Calendar (abstract)
java.util.GregorianCalendar

Sep 14, 2020 Sprenkle - CSCI209 16

16



Summary: Defining Abstract Classes

= Define a class as adbstract when class has
partial implementation

Sep 14, 2020 Sprenkle - CSCI209

17

17

INTERFACES

Sep 14, 2020 Sprenkle - CSCI209

18

18




Interfaces

® Pure specification, no implementation

A set of requirements for classes to conform to

® Classes can implement one or more interfaces

Sep 14, 2020 Sprenkle - CSCI209 19

19

Example of an Interface

® We can call Arrays.sort(array)

® Arrays.sort sorts arrays of any object class that
implements the Comparable interface

® Classes that implement Comparable must
provide a way to decide if one object is less than,
greater than, or equal to another object

Sep 14, 2020 Sprenkle - CSCI209 20

20




java.lang.Comparable

public interface Comparable {
int compareTo(Object other);
}

® Any object that is (inherits) Comparable must
have a method named compareTo()

® Returns:

Return a negative integer if this object is less than the
object passed as a parameter

Return a positive integer if this object is greater than the
object passed as a parameter

Return a 0 if the two objects are equal

Sep 14, 2020 Sprenkle - CSCI209 21

21

Comparable Interface API/Javadoc

® Specifies what the compareTo() method should
do

® Says which Java library classes implement
Comparable

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/
java/lang/Comparable.html

Sep 14, 2020 Sprenkle - CSCI209 22

22




Implementing an Interface

® |n the class definition, specify that the class will
implement the specific interface

public class Chicken implements Comparable

® Provide a definition for all methods specified in
interface

How to determine Chicken order?

Sep 14, 2020 Sprenkle - CSCI209 23

23

Comparable Chickens
One way: order by height

public class Chicken implements Comparable {

public int compareTo(Object otherObject) {
Chicken other = (Chicken)otherObject;
1f (height < other.getHeight() )
return -1;
1f (height > other.getHeight())
return 1;
return 0;
// simpler: return height-other.getHeight()
}
}

What if otherObject is not a Chicken?

Sep 14, 2020 Sprenkle - CSCI209 24

24



Testing for Interfaces

® Can also use the itnstanceof operator to
see if an object implements an interface

e.g., to determine if an object can be compared to
another object using the Comparable interface

if (obj instanceof Comparable) {
// runs if obj is an object variable of a class
// that implements the Comparable interface
}
else {
// runs if it does not implement the interface
}

Sep 14, 2020 Sprenkle - CSCI209 25

25

Interface Object Variables

® Can use an object variable to refer to an object of any
class that implements an interface

® Using this object variable, can only access the
interface’s methods

® For example...

public void aMethod(Object obj) {

'{F (obj instanceof Comparable) {
Comparable comp = (Comparable) obj;
boolean res = comp.compareTo(obj2);

}
}

Sep 14, 2020 Sprenkle - CSCI209 26

26



Interface Definitions

public interface Comparable {
int compareTo(Object other);
}

® Interface methods are public by default
Do not need to specify methods as public

Sep 14, 2020 Sprenkle - CSCI209 27

27

Interface Definitions and Inheritance

® Can extend interfaces

Allows a chain of interfaces that go from general to
more specific

® For example, define an interface for an object
that is capable of moving:

public interface Movable {
void move(double x, double y);
}

Sep 14, 2020 Sprenkle - CSCI209 28

28




Interface Definitions and Inheritance

® A powered vehicle is also Movable

Must also have amilesPerGallon() method,
which will return its gas mileage

public interface Powered extends Movable {
double milesPerGallon();
ks

Sep 14, 2020 Sprenkle - CSCI209 29

29

Constants in an Interface

® |f a variable is specified in an interface, it is
automatically a constant:

public static final variable
public interface Powered extends Movable {

double milesPerGallon();
double SPEED_LIMIT = 95;

}

® An object that implements Powered
interface has a constant SPEED_LIMIT
defined

Sep 14, 2020 Sprenkle - CSCI209 30

30




Interface Definitions and Inheritance

® Powered interface extends Movable interface

® An object that implements Powered interface
must satisfy all requirements of that interface as
well as the parent interface.

A Powered object must have a
milesPerGallon() and move() method

Sep 14, 2020 Sprenkle - CSCI209 31

31

Multiple Interfaces

® A class can implement multiple interfaces

Must fulfill the requirements of each interface

public final class String implements
Serializable, Comparable, CharSequence { ..

® But NOT possible with inheritance

A class can only extend (or inherit from) one class

Sep 14, 2020 Sprenkle - CSCI209 32

32



Benefits of Interfaces

® Abstraction

Separate the interface from the implementation

® Allow easier type substitution
We'll see this with Collections

® Can implement multiple interfaces

Sep 14, 2020 Sprenkle - CSCI209 33

33

Interface Summary

® Contain only object (not class) methods
® All methods are public
Implied if not explicit
® Fields are constants that are static and
final
® A class can implement multiple interfaces

Separated by commas in definition

Sep 14, 2020 Sprenkle - CSCI209 34

34




Compare Interfaces and Abstract Classes

 Summarize characteristics of each.
* Then discuss when should we use
an interface or an abstract class.

Sep 14, 2020 Sprenkle - CSCI209 35

35

Using an Interface or Abstract Class

Interfaces Abstract Classes
\/Any class can use ® Contain partial
Can implement multiple implementation
interfaces — Can’t extend/subclass
® No implementation multiple classes
— Implementing methods v" Add non-abstract methods
multiple times without breaking
subclasses

— Adding a method to
interface will break classes

that implement

Sep 14, 2020 Sprenkle - CSCI209 36

36



One Option: Use Both!

* Define interface, e.g., MyInterface

® Define abstract class, e.g.,
AbstractMyInterface
Implements interface
Provides implementation for some methods

Sep 14, 2020 Sprenkle - CSCI209 37

37

Abstract Classes and Interfaces
® Important structures in Java

Make code easier to change

e Will return to/apply these ideas throughout the
course

® Concepts are used in many languages besides
Java

Sep 14, 2020 Sprenkle - CSCI209 38

38



Looking Ahead

® Assignment 6: Goblin Game
Can now do the refactoring part
Due Wednesday before class

Sep 14, 2020 Sprenkle - CSCI209

39

39




