
9/16/20

1

Objectives
• Collections
• Generics
• Eclipse

Sept 16, 2020 Sprenkle - CSCI209 1

1

Iteration over Code: Assignment 6
• Demonstrates typical design/implementation

process
Ø Start with original code design

• Inheritance from GamePiece class
Ø Realize it could be designed better

• Make GamePiece class abstract
• Use an array of GamePiece objects
• Easier to add new functionality to Game

• Major part of problem-solving is figuring out how to
break problem into smaller pieces

• Reminders
Ø Heed my warnings
Ø Start simple, small

Sept 16, 2020 Sprenkle - CSCI209 2

2

9/16/20

2

Kroger App Bug

Sept 16, 2020 Sprenkle - CSCI209 3

3

Sept 16, 2020 Sprenkle - CSCI209 4

Review
1. What do child classes inherit?

a) What don’t they inherit?
2. How do we specify that a class/method cannot be

subclassed/overridden, respectively?
3. Compare and contrast abstract classes and

interfaces
4. When should a class be abstract?

a) If you extend an abstract class, do you have to override
all abstract methods?

5. When should you create/use an interface?
6. What is the keyword for specifying that your class

adheres to an interface?

4

9/16/20

3

Using an Interface or Abstract Class

üAny class can use
ü Can implement multiple

interfaces

• No implementation
- Implementing methods

multiple times
- Adding a method to

interface will break classes
that implement

• Contain partial
implementation

- Can’t extend/subclass
multiple classes

üAdd non-abstract methods
without breaking
subclasses

Sept 16, 2020 Sprenkle - CSCI209 5

Interfaces Abstract Classes

5

Sept 16, 2020 Sprenkle - CSCI209 6

One Option: Create Both!
• Define interface, e.g., MyInterface
• Define abstract class, e.g.,
AbstractMyInterface
Ø Implements interface
ØProvides implementation for some methods

6

9/16/20

4

Abstract Classes and Interfaces
• Important structures in Java

ØMake code easier to change

• Will return to/apply these ideas throughout the
course

• Concepts are used in many languages besides
Java
Ø Java enforces the constructs

Sept 16, 2020 Sprenkle - CSCI209 7

7

COLLECTIONS

Sept 16, 2020 Sprenkle - CSCI209 8

8

9/16/20

5

Collections
• Sometimes called containers
• Group multiple elements into a single unit
• Store, retrieve, manipulate, and communicate

aggregate data
• Represent data items that form a natural group

ØPoker hand (a collection of cards)
ØMail folder (a collection of messages)
Ø Telephone directory (a mapping of names to phone

numbers)

Sept 16, 2020 Sprenkle - CSCI209 9

9

Java Collections Framework
• Unified architecture for representing and

manipulating collections

• More than arrays
ØMore flexible, functionality, dynamic sizing

• In java.util package

Sept 16, 2020 Sprenkle - CSCI209 10

10

9/16/20

6

Collections Framework
• Interfaces

Ø Abstract data types that represent collections
Ø Collections can be manipulated independently of

implementation
• Implementations

Ø Concrete implementations of collection interfaces
Ø Reusable data structures

• Algorithms
Ø Methods that perform useful computations on

collections, e.g., searching and sorting
Ø Reusable functionality
Ø Polymorphic: same method can be used on many

different implementations of collection interface

Sept 16, 2020 Sprenkle - CSCI209 11

11

Core Collection Interfaces
• Encapsulate different types of collections

Sept 16, 2020 Sprenkle - CSCI209 12

12

9/16/20

7

GENERICS

Sept 16, 2020 Sprenkle - CSCI209 13

13

Generic Collection Interfaces
• Added to Java in version 1.5
• Declaration of the Collection interface:

Ø <E> means interface is generic for element class
• When declare a Collection, specify type of

object it contains
Ø Make sure put in, get out appropriate type
Ø Allows compiler to verify that object’s type is correct

• Reduces errors at runtime
• Example, a hand of cards:

Sept 16, 2020 Sprenkle - CSCI209 14

List<Card> hand = new ArrayList<Card>();

Type
parameter

Always declare type

public interface Collection<E> …

List<Card> hand = new ArrayList<>();Added in Java 7:

14

9/16/20

8

Comparable Interface
• Also uses Generics

Sept 16, 2020 Sprenkle - CSCI209 15

public interface Comparable<T>

int compareTo(T o)

The type it compares

15

Comparing: Before & After Generics
• Before Generics

• After Generics

Sept 16, 2020 Sprenkle - CSCI209 16

List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

List<Card> myList = new LinkedList<>();
myList.add(new Card(4, "clubs"));
…
Card x = myList.get(0);

ü Improved readability and robustness

16

9/16/20

9

Chicken Comparison
public int compareTo(Object otherObject) {

if(! (otherObject instanceof Chicken)) {
return 1;

}
Chicken other = (Chicken) otherObject;
if (height < other.getHeight())

return -1;
if (height > other.getHeight())

return 1;
return 0;

} public int compareTo(Chicken other) {
if (height < other.getHeight())

return -1;
if (height > other.getHeight())

return 1;
return 0;

}

Sept 16, 2020 Sprenkle - CSCI209 17

17

Types Allowed with Generics
• Can only contain Objects, not primitive types

• Autoboxing and Autounboxing to the rescue!

Sept 16, 2020 Sprenkle - CSCI209 18

18

9/16/20

10

WRAPPER CLASSES

Sept 16, 2020 Sprenkle - CSCI209 19

19

Sept 16, 2020 Sprenkle - CSCI209 20

Wrapper Classes
• Wrapper class for each primitive type
• Sometimes need an instance of an Object

Ø To store in Lists and other Collections
• Include functionality of parsing their respective

data types

int x = 10;
Integer y = Integer.valueOf(10);
Integer z = Integer.valueOf("10");

20

9/16/20

11

Sept 16, 2020 Sprenkle - CSCI209 21

Wrapper Classes
• Autoboxing – automatically create a wrapper object

• Autounboxing – automatically extract a primitive type

Integer x = Integer.valueOf(11);
int y = x.intValue();
int z = x; // implicitly, x is x.intValue();

// implicitly 11 converted to Integer,
// e.g., Integer.valueOf(11)
Integer y = 11;

Convert right side to whatever is needed on the left

21

Effective Java: Unnecessary Autoboxing

Sept 16, 2020 Sprenkle - CSCI209 22

Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

Autobox.java

• Can you find the inefficiency from object creation?
• How can you fix the inefficiency?

22

9/16/20

12

Effective Java: Unnecessary Autoboxing

Sept 16, 2020 Sprenkle - CSCI209 23

Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

Autobox.java

• How can you fix the inefficiency?

Constructs 231 Long instances

AutoboxFixed.java

23

Effective Java: Unnecessary Autoboxing

Sept 16, 2020 Sprenkle - CSCI209 24

Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

Autobox.java

Constructs 231 Long instances

AutoboxFixed.java

Lessons:
•Prefer primitives to boxed primitives
•Watch for unintentional autoboxing

24

9/16/20

13

Sept 16, 2020 Sprenkle - CSCI209 25

25

2011 Software System Award

Sept 16, 2020 Sprenkle - CSCI209 26

created by IBM.
Eclipse changed the way builders think about tools by
defining a set of user interaction paradigms for which
domain-specific variants are plugged in and customized for
their tool.
Conceived to address perceived shortcomings in
proprietary software development tools, Eclipse allowed
developers to seamlessly integrate their own extensions,
specializations, and personalizations. …

The Software System Award is given to an institution or
individuals recognized for developing software systems

that have had a lasting influence, reflected in
contributions to concepts and/or commercial acceptance.

26

9/16/20

14

2011 Software System Award

Sept 16, 2020 Sprenkle - CSCI209 27

It revolutionized the notion of an Integrated Development
Environment (IDE) by identifying the conceptual kernel
underlying any IDE.

Eclipse was designed as an open, extensible platform for
application development tools with a Java IDE built on top. In
2004 Eclipse became a not-for-profit corporation.

The IBM Eclipse team included John Wiegand, Dave Thomson,
Gregory Adams, Philippe Mulet, Julian Jones, John Duimovich,
Kevin Haaland, Stephen Northover (now with Oracle),
and Erich Gamma (now with Microsoft).

27

• Open source integrated development environment
(IDE) for Java

• Has market share for Java IDEs
• Described as “an open extensible IDE for anything

and nothing in particular”
• Provides a robust Java development environment
• Incorporates popular software development tools

like JUnit and git
• Plugins allow extensibility

Sept 16, 2020 Sprenkle - CSCI209 28

https://www.eclipse.org/

28

9/16/20

15

Project/Code Organization
• workspace directory contains all projects

Ø Located in your home directory, unless you specified
otherwise

• Use projects to organize your code
• Within a project

Øsrc/ directory contains .java files
Øbin/ directory contains .class files

• Often hidden in GUI

Sept 16, 2020 Sprenkle - CSCI209 29

29

Java Made Easier
• Creating class’s basic functionality

Ø See Source and Refactor menus
• Gives you a list of methods for an object

Ø After you type object.
Ø Then shows parameters for methods

• Automatically creates template of Javadoc
Ø When you type /**

• Autocompletion of variables, methods
• Formatting code …
• Shows unused fields/variables
• Shows compiler errors
• …

Sept 16, 2020 Sprenkle - CSCI209 30

30

9/16/20

16

Eclipse Demo
• Create Birthday class

ØOverride equals and toString methods
• Create a new class

ØGenerate main method, Comments
• Create a String object, see methods used

• Demonstrate refactoring
ØRename a field
Ø Extract a method (month name)

• Run the Birthday Class (main)
ØCommand line arguments

Sept 16, 2020 Sprenkle - CSCI209 31

Why can a Java IDE provide
this functionality?

31

Eclipse Hints
• After you have written a method, type

before the method, and then hit enter and the
Javadocs template will be automatically generated
for you

• Use command-spacebar for possible completions

Sept 16, 2020 Sprenkle - CSCI209 32

/**

32

9/16/20

17

Eclipse Discussion
• Helpful hints

ØControl-spacebar
Ø Format the file
ØAuto-templates for Javadocs

Sept 16, 2020 Sprenkle - CSCI209 33

33

Looking Ahead
• Assignment 7 – due Wednesday

ØMultiple components
• Eclipse practice
• Collections
• Generics
• Packages
• …

ØKeep building, based on what we’re doing in class

Sept 16, 2020 Sprenkle - CSCI209 34

34

