
9/18/20

1

Objectives
• Collections
• Traversing Collections

Sept 18, 2020 Sprenkle - CSCI209 1

1

Review
1. (from Monday) How do we indicate that a class is part of a

particular package?
2. What are the 3 components of the Java Collection

Framework?
3. What data types can collections hold?
4. How can we convert a primitive type into its respective

Wrapper Class type?
5. What are 3 of the main interfaces for collections that Java

provides?
a) What are the properties of those collections?
b) What are operations you can perform on those collections?

6. What is the syntax to say what type the collection holds?
7. Why can Eclipse provide the functionality it does?
8. Why did I wait until now to show you Eclipse?

Sept 18, 2020 Sprenkle - CSCI209 2

2

9/18/20

2

Eclipse
• Very helpful – after you know what you’re doing

Ø You know
• Code is compiled before executed
• Structure of classes
• How to fix errors

• Eclipse can handle the “routine” for you
Ø That wasn’t “routine” for you a few weeks ago

• Gives suggestions for fixes
Ø You need to think through what the appropriate fix is
Ø Don’t say “Eclipse made me do <something>”

• Eclipse is a beast (memory hog)
Ø If you have less than ~8GB of memory, Eclipse will be

slow
Sept 18, 2020 Sprenkle - CSCI209 3

3

Eclipse Hints
• After you have written a method, type

before the method, and then hit enter and the
Javadocs comment template will be automatically
generated for you

• Use command-spacebar for possible completions

Sept 18, 2020 Sprenkle - CSCI209 4

/**

4

9/18/20

3

Eclipse Discussion
• Helpful hints

ØControl-spacebar
Ø Format the file
ØAuto-templates for Javadoc comments

Sept 18, 2020 Sprenkle - CSCI209 5

5

Review: Collections Framework
• Interfaces

Ø Abstract data types that represent collections
Ø Collections can be manipulated independently of

implementation
• Implementations

Ø Concrete implementations of collection interfaces
Ø Reusable data structures

• Algorithms
Ø Methods that perform useful computations on

collections, e.g., searching and sorting
Ø Reusable functionality
Ø Polymorphic: same method can be used on many

different implementations of collection interface

Sept 18, 2020 Sprenkle - CSCI209 6

6

9/18/20

4

Review: Core Collection Interfaces
• Encapsulate different types of collections

Sept 18, 2020 Sprenkle - CSCI209 7

public abstract class AbstractList<E>
extends AbstractCollection<E> implements
List<E>

Similarly, abstract class inheriting from an abstract class:

7

Comparing: Before & After Generics
• Before Generics

• After Generics

Sept 18, 2020 Sprenkle - CSCI209 8

List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

List<Card> myList = new LinkedList<>();
myList.add(new Card(4, "clubs"));
…
Card x = myList.get(0);

ü Improved readability and robustness

8

9/18/20

5

LISTS

Sept 18, 2020 Sprenkle - CSCI209 9

9

List
• An ordered collection of elements
• Can contain duplicate elements
• Has control over where objects are stored in the

list

Sept 18, 2020 Sprenkle - CSCI209 10

10

9/18/20

6

List Interface
•boolean add(<E> o)

ØBoolean so that List can refuse some elements
• e.g., refuse adding null elements

•<E> get(int index)
ØReturns element at the position index
ØDifferent from Python: no shorthand

• Can’t write list[pos]
•int size()

ØReturns the number of elements in the list
• And more!

Øcontains, remove, toArray, …

Sept 18, 2020 Sprenkle - CSCI209 11

11

Common List Implementations
• ArrayList

Ø Resizable array
Ø Used most frequently
Ø Fast

• LinkedList
Ø Use if adding elements to

ends of list
Ø Use if often delete from

middle of list
Ø Implements Deque and

other methods so that it
can be used as a stack or
queue

Sept 18, 2020 Sprenkle - CSCI209 12

How would you find the other implementations of List?

12

9/18/20

7

Implementation vs. Interface

• Preferred Style:
1. Choose an implementation
2. Assign collection to variable of corresponding

interface type

•Methods should accept interfaces—not
implementations

Sept 18, 2020 Sprenkle - CSCI209 13

Implementation choice only affects performance

Interface variable = new Implementation();

Why is this the preferred style?

13

Implementation vs. Interface

• Preferred Style:
1. Choose an implementation
2. Assign collection to variable of corresponding interface

type
• Why?

Ø Program does not depend on a given implementation’s
methods
• Access only using interface’s methods

Ø Programmer can change implementations
• Performance concerns or behavioral details

Sept 18, 2020 Sprenkle - CSCI209 14

Implementation choice only affects performance

14

9/18/20

8

Discussion of Deck Class

Sept 18, 2020 Sprenkle - CSCI209 15

cards.Deck.java

15

SETS

Sept 18, 2020 Sprenkle - CSCI209 16

16

9/18/20

9

Set Interface
• No duplicate elements

ØNeeds to determine if two elements are “logically”
the same (equals method)

• Models mathematical set abstraction

Sept 18, 2020 Sprenkle - CSCI209 17

17

Set Interface
•boolean add(<E> o)

ØAdd to set, only if not already present

•int size()
ØReturns the number of elements in the list

• And more! (contains, remove,
toArray, …)
ØNote: no get method -- get #3 from the set?

Sept 18, 2020 Sprenkle - CSCI209 18

18

9/18/20

10

Some Set Implementations
• HashSet

Ø Implements set using
hash table
• add, remove, and
contains each execute
in O(1) time

Ø Used more frequently
Ø Faster than TreeSet
Ø No ordering

• TreeSet
Ø Implements set using a

tree
• add, remove, and
contains each execute
in O(log n) time

Ø Sorts

Sept 18, 2020 Sprenkle - CSCI209 19

19

FindDuplicates Problem
• From the array of command-line arguments,

identify the duplicates

Sept 18, 2020 Sprenkle - CSCI209 20

public static void main(String args[]) {

}

20

9/18/20

11

FindDuplicates: One solution

Sept 18, 2020 Sprenkle - CSCI209 21

public static void main(String args[]) {
Set<String> s = new HashSet<>();
for (String a : args) {
if (!s.add(a)) {

System.out.println(
"Duplicate detected: " + a);

}
}
System.out.println(s.size() +

" distinct words detected: " + s);
}

How much does code changes if s is a TreeSet?

21

MAPS

Sept 18, 2020 Sprenkle - CSCI209 22

22

9/18/20

12

Maps
•Maps keys (of type <K>) to values (of type

<V>)

•No duplicate keys
ØEach key maps to at most one value

Sept 18, 2020 Sprenkle - CSCI209 23

23

Declaring Maps
• Declare types for both keys and values
•class HashMap<K,V>

Sept 18, 2020 Sprenkle - CSCI209 24

Keys are Strings
Values are Lists of Strings

Map<String, List<String>> map
= new HashMap<>();

Keys are Strings
Values are Integers

Map<String, Integer> map = new HashMap<>();

24

9/18/20

13

Map Interface
•<V> put(<K> key, <V> value)

ØReturns old value that key mapped to

•<V> get(Object key)
ØReturns value at that key (or null if no

mapping)

•Set<K> keySet()
ØReturns the set of keys

Sept 18, 2020 Sprenkle - CSCI209 25

And more …

25

A few Map Implementations
•HashMap

Ø Fast

•TreeMap
Ø Sorting
ØKey-ordered iteration

•LinkedHashMap
Ø Fast
Ø Insertion-order iteration

Sept 18, 2020 Sprenkle - CSCI209 26

26

9/18/20

14

ALGORITHMS

Sept 18, 2020 Sprenkle - CSCI209 27

27

Collections Framework’s Algorithms
• Polymorphic algorithms
• Reusable functionality
• Implemented in the Collections class

Ø Similar to Arrays class, which operates on arrays

Ø Static methods, 1st argument is the Collection

Sept 18, 2020 Sprenkle - CSCI209 28

28

9/18/20

15

Overview of Available Algorithms
• Sorting – optional Comparator
• Shuffling
• Searching – binarySearch
• Routine data manipulation: reverse*, copy*, fill*,

swap*, addAll
• Composition – frequency, disjoint
• Finding min, max

Sept 18, 2020 Sprenkle - CSCI209 29

* Only Lists

29

TRAVERSING COLLECTIONS

Sept 18, 2020 Sprenkle - CSCI209 30

30

9/18/20

16

Traversing Collections: For-each Loop
• For-each loop:

• Valid for all Collections
ØMaps (and its implementations) are not
Collections
• But, Map’s keySet() is a Set and values() is a
Collection

Sept 18, 2020 Sprenkle - CSCI209 31

for (Object o : collection)
System.out.println(o);

Or whatever data type is appropriate

31

Sept 18, 2020 Sprenkle - CSCI209 32

Traversing Lists: Iterator
• Always between two elements

Iterator<Integer> i = list.iterator();
while(i.hasNext()) {

int value = i.next();
…

}

32

9/18/20

17

Iterator API
•<E> next()

ØGet the next element

• boolean hasNext()
ØAre there more elements?

• void remove()
ØRemove the previous element
ØOnly safe way to remove elements during iteration

• Not known what will happen if remove elements in
for-each loop

Sept 18, 2020 Sprenkle - CSCI209 33

33

Sept 18, 2020 Sprenkle - CSCI209 34

Polymorphic Filter Algorithm

static void filter(Collection c) {
Iterator i = c.iterator();
while(i.hasNext()) {

// if the next element does not
// adhere to the condition, remove it
if (! condition(i.next())) {

i.remove();
}

}
}

Polymorphic: works regardless of Collection implementation

ListIteratorExamples.java
34

9/18/20

18

Sept 18, 2020 Sprenkle - CSCI209 35

Traversing Lists: ListIterator
• Methods to traverse list backwards too

ØhasPrevious()
Øprevious()

• To get a ListIterator:
ØlistIterator(int position)

• Pass in size() as position to get at end of list

Key difference

ListIteratorExamples.java
35

How Not to Iterate
• Don’t use get to access List

Ø If implementation is a LinkedList,
performance is reeeeeally slow

Sept 18, 2020 Sprenkle - CSCI209 36

for (int i = 0; i < list.size(); i++) {
count += list.get(i); // do something

}

What to do instead?

36

9/18/20

19

Sept 18, 2020 Sprenkle - CSCI209 37

Enumeration
• Legacy class
• Similar to Iterator
• Example methods:

Øboolean hasMoreElements()
ØObject nextElement()

• Longer method names
• Doesn’t have remove operation

37

Sept 18, 2020 Sprenkle - CSCI209 38

Synchronized Collection Classes
• For multiple threads sharing same collection
• Slow down typical programs

ØAvoid for now
• e.g., Vector, Hashtable
• See java.util.concurrent

Another example: StringBuffer is synchronized,
whereas StringBuilder is not

38

9/18/20

20

Benefits of Collections Framework
• ?

Sept 18, 2020 Sprenkle - CSCI209 39

39

Benefits of Collections Framework
• Provides common, well-known interface

Ø Allows interoperability among unrelated APIs
Ø Reduces effort to learn and to use new APIs for different

implementations
• Reduces programming effort: provides useful, reusable data

structures and algorithms
• Increases program speed and quality: provides high-

performance, high-quality implementations of data structures
and algorithms; interchangeable implementations à tuning

• Reduces effort to design new APIs: use standard collection
interface for your collection

• Fosters software reuse: New data structures/algorithms that
conform to the standard collection interfaces are reusable

Sept 18, 2020 Sprenkle - CSCI209 40

40

9/18/20

21

Looking Ahead
• Assignment 7 – due Wednesday
• Exam 1 – next Friday

ØOnline, timed exam
• No class next Friday
• Start time, due time TBD

ØOpen book/notes/slides – but do not rely on that
• NOT open internet

ØPrep document online
Ø 3 sections:

• Very Short Answer, Short Answer, Coding

Sept 18, 2020 Sprenkle - CSCI209 41

41

