
9/18/20

1

Objectives
• Collections
• Traversing Collections
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Review
1. (from Monday) How do we indicate that a class is part of a 

particular package?
2. What are the 3 components of the Java Collection 

Framework?
3. What data types can collections hold?
4. How can we convert a primitive type into its respective 

Wrapper Class type?
5. What are 3 of the main interfaces for collections that Java 

provides?
a) What are the properties of those collections?
b) What are operations you can perform on those collections?

6. What is the syntax to say what type the collection holds?
7. Why can Eclipse provide the functionality it does?
8. Why did I wait until now to show you Eclipse?
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Eclipse
• Very helpful – after you know what you’re doing

Ø You know
• Code is compiled before executed
• Structure of classes
• How to fix errors

• Eclipse can handle the “routine” for you
Ø That wasn’t “routine” for you a few weeks ago

• Gives suggestions for fixes
Ø You need to think through what the appropriate fix is
Ø Don’t say “Eclipse made me do <something>”

• Eclipse is a beast (memory hog)
Ø If you have less than ~8GB of memory, Eclipse will be 

slow
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Eclipse Hints
• After you have written a method, type

before the method, and then hit enter and the 
Javadocs comment template will be automatically 
generated for you

• Use command-spacebar for possible completions
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Eclipse Discussion
• Helpful hints

ØControl-spacebar
Ø Format the file
ØAuto-templates for Javadoc comments
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Review: Collections Framework
• Interfaces

Ø Abstract data types that represent collections
Ø Collections can be manipulated independently of 

implementation 
• Implementations

Ø Concrete implementations of collection interfaces
Ø Reusable data structures

• Algorithms
Ø Methods that perform useful computations on 

collections, e.g., searching and sorting
Ø Reusable functionality
Ø Polymorphic: same method can be used on many 

different implementations of collection interface
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Review: Core Collection Interfaces
• Encapsulate different types of collections
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public abstract class AbstractList<E> 
extends AbstractCollection<E> implements 
List<E>

Similarly, abstract class inheriting from an abstract class:
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Comparing: Before & After Generics
• Before Generics

• After Generics
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List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

List<Card> myList = new LinkedList<>();
myList.add(new Card(4, "clubs"));
…
Card x = myList.get(0);

ü Improved readability and robustness 
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LISTS
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List
• An ordered collection of elements
• Can contain duplicate elements
• Has control over where objects are stored in the 

list
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List Interface
•boolean add(<E> o)

ØBoolean so that List can refuse some elements
• e.g., refuse adding null elements

•<E> get(int index)
ØReturns element at the position index
ØDifferent from Python: no shorthand

• Can’t write list[pos]
•int size() 

ØReturns the number of elements in the list
• And more!

Øcontains, remove, toArray, …
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Common List Implementations
• ArrayList

Ø Resizable array
Ø Used most frequently
Ø Fast

• LinkedList
Ø Use if adding elements to 

ends of list
Ø Use if often delete from 

middle of list
Ø Implements Deque and 

other methods so that it 
can be used as a stack or 
queue 
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How would you find the other implementations of List?
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Implementation vs. Interface

• Preferred Style:
1. Choose an implementation
2. Assign collection to variable of corresponding 

interface type

•Methods should accept interfaces—not 
implementations
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Implementation choice only affects performance

Interface variable = new Implementation();

Why is this the preferred style?
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Implementation vs. Interface

• Preferred Style:
1. Choose an implementation
2. Assign collection to variable of corresponding interface 

type
• Why?

Ø Program does not depend on a given implementation’s 
methods
• Access only using interface’s methods

Ø Programmer can change implementations
• Performance concerns or behavioral details
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Implementation choice only affects performance
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Discussion of Deck Class
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cards.Deck.java
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SETS
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Set Interface
• No duplicate elements

ØNeeds to determine if two elements are “logically” 
the same (equals method)

• Models mathematical set abstraction
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Set Interface
•boolean add(<E> o)

ØAdd to set, only if not already present

•int size() 
ØReturns the number of elements in the list

• And more!  (contains, remove, 
toArray, …)
ØNote: no get method -- get #3 from the set?
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Some Set Implementations
• HashSet

Ø Implements set using 
hash table
• add, remove, and 
contains each execute 
in O(1) time 

Ø Used more frequently
Ø Faster than TreeSet
Ø No ordering

• TreeSet
Ø Implements set using a 

tree
• add, remove, and 
contains each execute 
in    O(log n) time 

Ø Sorts

Sept 18, 2020 Sprenkle - CSCI209 19

19

FindDuplicates Problem
• From the array of command-line arguments, 

identify the duplicates 
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public static void main(String args[]) {

}
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FindDuplicates: One solution
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public static void main(String args[]) {
Set<String> s = new HashSet<>();
for (String a : args) {
if (!s.add(a)) {

System.out.println(
"Duplicate detected: " + a);

}
}
System.out.println(s.size() +

" distinct words detected: " + s);
}

How much does code changes if s is a TreeSet?
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MAPS
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Maps
•Maps keys (of type <K>) to values (of type 

<V>)

•No duplicate keys
ØEach key maps to at most one value

Sept 18, 2020 Sprenkle - CSCI209 23

23

Declaring Maps
• Declare types for both keys and values
•class HashMap<K,V>
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Keys are Strings
Values are Lists of Strings

Map<String, List<String>> map 
= new HashMap<>();

Keys are Strings
Values are Integers

Map<String, Integer> map = new HashMap<>();
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Map Interface
•<V> put(<K> key, <V> value)

ØReturns old value that key mapped to

•<V> get(Object key) 
ØReturns value at that key (or null if no 

mapping)

•Set<K> keySet() 
ØReturns the set of keys
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And more …
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A few Map Implementations
•HashMap

Ø Fast

•TreeMap
Ø Sorting
ØKey-ordered iteration

•LinkedHashMap
Ø Fast
Ø Insertion-order iteration
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ALGORITHMS
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Collections Framework’s Algorithms
• Polymorphic algorithms
• Reusable functionality 
• Implemented in the Collections class

Ø Similar to Arrays class, which operates on arrays

Ø Static methods, 1st argument is the Collection
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Overview of Available Algorithms
• Sorting – optional Comparator
• Shuffling
• Searching – binarySearch
• Routine data manipulation: reverse*, copy*, fill*, 

swap*, addAll
• Composition – frequency, disjoint
• Finding min, max
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* Only Lists
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TRAVERSING COLLECTIONS
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Traversing Collections: For-each Loop
• For-each loop:

• Valid for all Collections
ØMaps (and its implementations) are not 
Collections
• But, Map’s keySet() is a Set and values() is a 
Collection
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for (Object o : collection) 
System.out.println(o);

Or whatever data type is appropriate

31
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Traversing Lists: Iterator
• Always between two elements

Iterator<Integer> i = list.iterator();
while( i.hasNext()) {

int value = i.next();
…

}
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Iterator API
•<E> next()

ØGet the next element

• boolean hasNext() 
ØAre there more elements? 

• void remove() 
ØRemove the previous element
ØOnly safe way to remove elements during iteration

• Not known what will happen if remove elements in 
for-each loop
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Polymorphic Filter Algorithm

static void filter(Collection c) {
Iterator i = c.iterator();
while( i.hasNext() ) {

// if the next element does not
// adhere to the condition, remove it 
if ( ! condition(i.next()) ) {

i.remove();
}

}
}

Polymorphic: works regardless of Collection implementation

ListIteratorExamples.java
34
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Traversing Lists: ListIterator
• Methods to traverse list backwards too

ØhasPrevious()
Øprevious()

• To get a ListIterator: 
ØlistIterator(int position)

• Pass in size() as position to get at end of list

Key difference

ListIteratorExamples.java
35

How Not to Iterate
• Don’t use get to access List

Ø If implementation is a LinkedList, 
performance is reeeeeally slow
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for (int i = 0; i < list.size(); i++) {
count += list.get(i); // do something

}

What to do instead?
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Enumeration
• Legacy class
• Similar to Iterator
• Example methods: 

Øboolean hasMoreElements() 
ØObject nextElement() 

• Longer method names
• Doesn’t have remove operation

37
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Synchronized Collection Classes
• For multiple threads sharing same collection
• Slow down typical programs

ØAvoid for now
• e.g., Vector, Hashtable
• See java.util.concurrent

Another example: StringBuffer is synchronized, 
whereas StringBuilder is not
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Benefits of Collections Framework
• ?
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Benefits of Collections Framework
• Provides common, well-known interface

Ø Allows interoperability among unrelated APIs
Ø Reduces effort to learn and to use new APIs for different 

implementations
• Reduces programming effort: provides useful, reusable data 

structures and algorithms
• Increases program speed and quality: provides high-

performance, high-quality implementations of data structures 
and algorithms; interchangeable implementations à tuning

• Reduces effort to design new APIs: use standard collection 
interface for your collection 

• Fosters software reuse: New data structures/algorithms that 
conform to the standard collection interfaces are reusable
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Looking Ahead
• Assignment 7 – due Wednesday
• Exam 1 – next Friday

ØOnline, timed exam
• No class next Friday
• Start time, due time TBD

ØOpen book/notes/slides – but do not rely on that
• NOT open internet

ØPrep document online
Ø 3 sections:

• Very Short Answer, Short Answer, Coding
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