
Objectives
• Exceptions
• Files
• Streams

Sept 23, 2020 Sprenkle - CSCI209 1

Review
1. What is an Exception?
2. How do we create Exceptions?
3. How do we advertise that our method may produce an

exception?
4. What are the different categories of exceptions?

a) What are examples (i.e., class names) of those categories of
exceptions?

5. How do you handle an exception? (In Python, this was called
“except”)

6. Hypothetical: to grade assignment 7, I am going to write one
program that creates objects of each of your [all the
students’] classes and call methods on them.
Ø But, you all have the same names for your classes!

• (Because that’s what I told you to do.)
Ø How can my code distinguish between the classes?

Sept 23, 2020 Sprenkle - CSCI209 2

Review: Packages in Assignment 7

Sept 23, 2020 Sprenkle - CSCI209 3

edu

wlu

cs

student1 AudioBookDVDMediaItemCD

student2 AudioBookDVDMediaItemCD

My code:
edu.wlu.cs.student1.CD cd1 = …
edu.wlu.cs.student2.CD cd2 = …

Assignment 7 Review
• Eclipse practice
• Javadocs

Ø See what the web pages look like from your
comments!

Sept 23, 2020 Sprenkle - CSCI209 4

Error

Sept 23, 2020 Sprenkle - CSCI209 5

Review: Exception Classification

Throwable

Exception

IOException
RuntimeException

SQLException

Others…

Un
ch
ec
ke
d

Unchecked

Ch
ec
ke
d

Checked

Checked: All non-
RuntimeExceptions

Part of
java.lang

package

Review: Categories of Exceptions
Unchecked
• Any exception that derives

from Error or
RuntimeException

• Programmer does not
necessarily create/handle

• Try to make sure that they
don’t occur

• Often indicates
programmer error
Ø E.g., precondition violations,

not using API correctly

Checked
• Any other exception
• Programmer creates and

handles checked exceptions
• Compiler-enforced checking

Ø Improves reliability*

• For conditions from which
caller can reasonably be
expected to recover

Sept 23, 2020 Sprenkle - CSCI209 6

Review: Types of Unchecked Exceptions
1. Derived from the class Error

ØAny line of code can generate because it is an
internal JVM error

ØDon’t worry about what to do if this happens

2. Derived from the class RuntimeException
Ø Indicates a bug in the program
Ø Fix the bug
ØExamples: ArrayOutOfBoundsException,
NullPointerException,
ClassCastException

Sept 23, 2020 Sprenkle - CSCI209 7

Sept 23, 2020 Sprenkle - CSCI209 8

Review: Throwing An Exception We Created

1. Create a new object of class
IllegalArgumentException
ØClass derived from RuntimeException

2.throw it
ØMethod ends at this point
ØCalling method handles exception

if (grade < 0 || grade > 100) {
throw new IllegalArgumentException(
"Grade must be between 0 and 100.");

}

Review: Common Exceptions
Name Purpose
IllegalArgumentException When caller passes in inappropriate argument

IllegalStateException Invocation is illegal because of receiving object’s
state. (Ex: closing a closed window)

• Both inherit from RuntimeException
• May seem like these cover everything but only used for

certain kinds of illegal arguments and exceptions
• Not used when

Ø A null argument passed in; should be a
NullPointerException

Ø Pass in invalid index for an array; should be an
IndexOutOfBoundsException

Sept 23, 2020 Sprenkle - CSCI209 9Birthday.java

Review: Birthday Error Handling Discussion

• Design decision:
Ø Since month and day are not independent, should be

set together rather than separately
• Check all the error cases before setting the

instance variables
ØDon’t want an inconsistent birthday after method

called
ØExample of Failure Atomicity

• IllegalArgumentException is appropriate
ØProgramming error
Ø Should catch those errors before executing program

Sept 23, 2020 Sprenkle - CSCI209 10

CATCHING EXCEPTIONS

Sept 23, 2020 Sprenkle - CSCI209 11

Catching Exceptions
• After we throw an exception, some part of

program needs to catch it
• What does it mean to catch an exception?

ØProgram knows how to deal with the situation that
caused the exception

ØHandles the problem—hopefully gracefully, without
exiting

Sept 23, 2020 Sprenkle - CSCI209 12

Sept 23, 2020 Sprenkle - CSCI209 13

Try/Catch Block

• The simplest way to catch an exception
• Syntax:

try {
code;
more code;

}
catch (ExceptionType e) {

error code for ExceptionType;
}
catch (ExceptionType2 e) {

error code for ExceptionType2;
}
…

Python equivalent?

Sept 23, 2020 Sprenkle - CSCI209 14

Try/Catch Block
• Code in try block runs

first
• If try block completes

without an exception,
catch block(s) are not executed

• If try code generates an exception
ØA catch block runs
ØRemaining code in try block is not executed

•If an exception of a type other than
ExceptionType is thrown inside try block,
method exits immediately*
ØThrown to caller

try {
code;
more code;

}
catch (ExceptionType e) {

error code for
ExceptionType

}

Sept 23, 2020 Sprenkle - CSCI209 15

Try/Catch Block

• You can have more than one
catch block
ØTo handle > 1 type of

exception
• If exception is not of type
ExceptionType1, falls to
ExceptionType2, and so
forth
ØRun the first matching catch

block

try {
code;
more code;

}
catch (ExceptionType1 e) {

error code for
ExceptionType

}
catch (ExceptionType2 e) {

error code
for ExceptionType2

}

Can catch any exception with Exception e
but won’t have customized messages

Sept 23, 2020 Sprenkle - CSCI209 16

Try/Catch Example

public void read(BufferedReader in) {
try {

boolean done = false;
while (!done) {

String line=in.readLine();
// above could throw IOException
if (line == null)

done = true;
}

}
catch (IOException ex) {

ex.printStackTrace();
}

} Prints out stack trace to method call
that caused the error.

(Good start during development;
probably should do more.)

Sept 23, 2020 Sprenkle - CSCI209 17

Try/Catch Example

public void read(BufferedReader in) {
try {

boolean done = false;
while (!done) {

String line=in.readLine();
// above could throw IOException
if (line == null)

done = true;
}

}
catch (IOException ex) {

ex.printStackTrace();
}

}
More precise catch may help pinpoint error

But could result in messier code

Sept 23, 2020 Sprenkle - CSCI209 18

The finally Block

• Allows you to clean up or do maintenance before
method ends (one way or the other)
ØE.g., closing files or database connections

try {
…

}
catch (Exception e) {

…
}
finally {

…
}

• Optional: add a finally block
after all catch blocks
ØCode in finally block always

runs after code in try and/or
catch blocks

• After try block finishes or, if an
exception occurs, after the
catch block finishes

FinallyTest.java

Sept 23, 2020 Sprenkle - CSCI209 19

Practice: try/catch/finally Blocks

try {
statement1;
statement2;

}
catch (EOFException e) {

statement3;
statement4;

}
finally {

statement5;
}

• Which statements run if:
ØNeither statement1

nor statement2
throws an exception

Østatement1 throws an
EOFException

Østatement2 throws an
EOFException

Østatement1 throws an
IOException

Sept 23, 2020 Sprenkle - CSCI209 20

Practice: try/catch/finally Blocks

try {
statement1;
statement2;

}
catch (EOFException e) {

statement3;
statement4;

}
finally {

statement5;
}

• Which statements run if:
ØNeither statement1 nor
statement2 throws an
exception
• 1, 2, 5

Østatement1 throws an
EOFException
• 1, 3, 4, 5

Østatement2 throws an
EOFException
• 1, 2, 3, 4, 5

Østatement1 throws an
IOException
• 1, 5

What to do with a Caught Exception?
• Dump the stack after the exception occurs

ØWhat else can we do?

• Generally, two options:
1. Catch the exception and recover from it
2. Pass exception up to whoever called it

Sept 23, 2020 Sprenkle - CSCI209 21

To Throw or Catch?
• Problem: lower-level exception

propagated up to higher-level code
• Example: user enters account

information and gets exception
message “field exceeds allowed length
in database”
Ø Lost context
Ø Lower-level detail polluting higher-level

API

Sept 23, 2020 Sprenkle - CSCI209 22

Solution: higher-levels should catch lower-level exceptions
and throw them in terms of higher-level abstraction

GUI

DB

…

Exception
here

Handled
here

Exception Translation

• Special case: Exception Chaining
ØWhen higher-level exception needs info from lower-

level exception

Sept 23, 2020 Sprenkle - CSCI209 23

try {
// Call lower-level abstraction

}
catch (LowerLevelException ex) {

// TODO: log exception …
throw new HigherLevelException(…);

}

try {
// Call lower-level abstraction

}
catch (LowerLevelException cause) {

// TODO: log exception …
throw new HigherLevelException(cause);

}

Most standard
Exceptions have this

constructor

Guidelines for Exception Translation
• Try to ensure that lower-level APIs succeed

ØEx: verify that your parameters satisfy invariants

• Insulate higher-level from lower-level exceptions
ØHandle in some reasonable way
ØAlways log problem so admin can check

• If can’t do previous two, then use exception
translation

Sept 23, 2020 Sprenkle - CSCI209 24

Summary: Methods Throwing Exceptions
• API documentation tells you if a method can

throw an exception
Ø If so, you must handle it

• If your method could possibly throw an
exception (by generating it or by calling another
method that could), advertise it!
Ø If you can’t handle every error, that’s OK…let

whoever is calling you worry about it
ØHowever, they can only handle the error if you

advertise the exceptions you can’t deal with

Sept 23, 2020 Sprenkle - CSCI209 25

Programming with Exceptions
• Exception handling is slow
• Group relevant code together

Ø Scope of try/catch block should be small
• Use one big try block instead of

nesting try-catch blocks
Ø Speeds up Exception Handling
ØOtherwise, code gets too messy

• Don't ignore exceptions (e.g., catch
block does nothing)
ØBetter to pass them along to higher calls

Sept 23, 2020 Sprenkle - CSCI209 26

try {
}
catch () {
}
try {
}
catch () {
}

try {
try {
}
catch () {
}

}
catch () {
}

try {
…
…

}
catch () {
}

Sept 23, 2020 Sprenkle - CSCI209 27

Try Block Scope Example

public void read(BufferedReader in) {
try {

boolean done = false;
while (!done) {

String line=in.readLine();
// above could throw IOException
if (line == null)

done = true;
}

}
catch (IOException ex) {

ex.printStackTrace();
}

}

Only this line can throw the exception.

But all of this code was in try block
Why? My considerations:
• In while loop
• Scope of variables
• Readability of code

Sept 23, 2020 Sprenkle - CSCI209 28

Try/Catch Block (Lesser) Alternatives
public void read(BufferedReader in) {
boolean done = false;
try {
while (!done) {
String line=in.readLine();
if (line == null)
done = true;

}
}
catch (IOException ex) {
ex.printStackTrace();

}
}

public void read(BufferedReader in) {
boolean done = false;
while (!done) {
try {
String line=in.readLine();
if (line == null)
done = true;

}
catch (IOException ex) {
ex.printStackTrace();

}
}

}

Creating Custom Exception Class
• Try to reuse an existing exception

ØMatch in name as well as semantics

• If you cannot find a predefined Java
Exception class that describes your condition,
implement a new Exception class

Sept 23, 2020 Sprenkle - CSCI209 29

FYI… Skipping next 4 slides in class

Sept 23, 2020 Sprenkle - CSCI209 30

Creating Custom Exception Class

public class FileFormatException extends IOException {
public FileFormatException() {

}

public FileFormatException(String message) {
super(message);

}

// other 2 standard constructors…
}

• Can now throw exceptions of type
FileFormatException

What happens in this constructor implicitly?

Is this a checked or unchecked exception?

Guidelines for Creating Your Own Exception
Classes

• Include accessor methods to get more
information about the cause of the exception
Ø “failure-capture information”

• Checked or unchecked exception?
ØChecked: forces API user to handle BUT more

difficult to use API
• Has to handle all checked exceptions

ØUse checked exception if exceptional condition
cannot be prevented by proper use of API and API
user can take a useful action afterward

Sept 23, 2020 Sprenkle - CSCI209 31

Practice: Designing a New Exception Class

•Scenario: When an attempt to make a purchase
with a gift card fails because card doesn’t have
enough money, throw a new exception that you
created

•Recall that all Exceptions are Throwable,
so they have the methods: getMessage(),
printStackTrace(),
getStackTrace()

Sept 23, 2020 Sprenkle - CSCI209 32

•How would someone else use your class?
•What constructors, additional method(s) may you
want to add for your exception class?

Oct 3, 2016 Sprenkle - CSCI209 33

Discussion: Benefits of Exceptions
• Been talking about details…

• Why does Java have exceptions as part of the
language?

• Why does Java add some features that Python
doesn’t have?

Oct 3, 2016 Sprenkle - CSCI209 34

Benefits of Exceptions
• Force error checking/handling

Ø Otherwise, won’t compile
Ø Does not guarantee “good” exception handling

• Ease debugging
Ø Stack trace

• Separates error-handling code from “regular” code
Ø Error code is in catch blocks at end
Ø Descriptive messages with exceptions

• Propagate methods up call stack
Ø Let whoever “cares” about error handle it

• Group and differentiate error types

Does NOT mean that
error is prevented
at compile time—just
that we can improve
robustness

FILES

Sept 23, 2020 Sprenkle - CSCI209 35

java.io.File Class
• Represents a file or directory
• Provides functionality such as

Ø Storage of the file on the disk
ØDetermine if a particular file exists
ØWhen file was last modified
ØRename file
ØRemove/delete file
Ø…

Sept 23, 2020 Sprenkle - CSCI209 36

Making a File Object
• Simplest constructor takes full file name (including

path)
Ø If don’t supply path, Java assumes current directory (.)

Ø Creates a File object representing a file named
“chicken.data” in the current directory

Ø Does not create a file with this name on disk

Sept 23, 2020 Sprenkle - CSCI209 37

File myFile = new File("chicken.data");

Making a File Object
• Simplest constructor takes full file name (including

path)
Ø If don’t supply path, Java assumes current directory (.)

Ø Creates a File object representing a file named
“chicken.data” in the current directory

Ø Does not create a file with this name on disk

• Similar to Python:

Sept 23, 2020 Sprenkle - CSCI209 38

File myFile = new File("chicken.data");

myFile = open("chicken.data")

Sept 23, 2020 Sprenkle - CSCI209 39

Files, Directories, and Useful Methods
• A File object can represent a file or a

directory
ØDirectories are special files in most modern

operating systems

• Use isDirectory() and/or isFile() for
type of file File object represents

• Use exists() method
ØDetermines if a file exists on the disk

In Python, these are in the os.path module

Sept 23, 2020 Sprenkle - CSCI209 40

More File Constructors
• String for the path, String for filename

• File for directory, String for filename

File myFile = new File(
"/csdept/courses/cs209/handouts",
"chicken.data");

File myDir = new File(
"/csdept/courses/cs209/handouts");

File myFile = new File(myDir, "chicken.data");

Sept 23, 2020 Sprenkle - CSCI209 41

“Break” any of Java’s Principles?

Sept 23, 2020 Sprenkle - CSCI209 42

“Break” any of Java’s Principles?
• Priniciple of Portability

ØWrite and Compile Once, Run Anywhere

• Problem: file paths are OS-specific
• java.io.File.separator

ØOSX/Linux: /
ØWindows: \

• Takeaways:
ØUse relative paths
ØUse configuration files to set paths

Sept 23, 2020 Sprenkle - CSCI209 43

java.io.File Class
• 25+ methods

ØManipulate files and directories
ØCreating and removing directories
ØMaking, renaming, and deleting files
ØInformation about file (size, last modified)
ØCreating temporary files
Ø…

• See online API documentation

FileTest.java

STREAMS

Sept 23, 2020 Sprenkle - CSCI209 44

Streams

Sept 23, 2020 Sprenkle - CSCI209 45

input stream: an object from which we can
read a sequence of bytes
abstract class: java.io.InputStream

Java handles input/output using streams,
which are sequences of bytes

Streams

Sept 23, 2020 Sprenkle - CSCI209 46

output stream: an object to which we can write a
sequence of bytes
abstract class: java.io.OutputStream

Java handles input/output using streams,
which are sequences of bytes

Java Streams
• MANY (80+) types of Java streams
• In java.io package
• Why stream abstraction?

Ø Information stored in different sources is accessed in
essentially the same way
• Example sources: file, on a web server across the

network, string
ØAllows same methods to read or write data,

regardless of its source
• Create an InputStream or OutputStream of the

appropriate type

Sept 23, 2020 Sprenkle - CSCI209 47

Exam
• Canvas, timed exam: 70 minutes

Ø No class Friday – office hours during that time
Ø Open: Friday, 9:30 a.m. – Sunday, 11:59 p.m.

• Open book/notes/slides – but do not rely on that
Ø NOT open internet

• Prep document online
Ø Garbage collection

• 3 sections: Very Short Answer, Short Answer, Coding
• Honor Code

Ø No talking about the exam until after September 27
Sept 23, 2020 Sprenkle - CSCI209 48

Office hours will end at 12:45 today
Email for other appointments

