
9/28/20

1

Objectives
• Streams
• Standard Error
• Compiling

Sept 28, 2020 Sprenkle - CSCI209 1

1

Review: Streams

Sept 28, 2020 Sprenkle - CSCI209 2

input stream: an object from which we can
read a sequence of bytes
abstract class: java.io.InputStream

Java handles input/output using streams,
which are sequences of bytes

2

9/28/20

2

Review: Streams

Sept 28, 2020 Sprenkle - CSCI209 3

output stream: an object to which we can write a
sequence of bytes
abstract class: java.io.OutputStream

Java handles input/output using streams,
which are sequences of bytes

3

Java Streams
• MANY (80+) types of Java streams
• In java.io package
• Why stream abstraction?

Ø Information stored in different sources is accessed in
essentially the same way
• Example sources: file, on a web server across the

network, string
ØAllows same methods to read or write data,

regardless of its source
• Create an InputStream or OutputStream of the

appropriate type

Sept 28, 2020 Sprenkle - CSCI209 4

4

9/28/20

3

Sept 28, 2020 Sprenkle - CSCI209 5

java.io Classes Overview
• Two categories of stream classes, based on

datatype: Byte, Text

• Abstract base classes for binary data:

• Abstract base classes for text data:

InputStream OutputStream

Reader Writer

5

Sept 28, 2020 Sprenkle - CSCI209 6

Byte Streams: For Binary Data

Abstract Base Classes

Shaded: Read from/write to source
White: Does some processing

In java.io package

6

9/28/20

4

Sept 28, 2020 Sprenkle - CSCI209 7

Character Streams: For Text

Abstract Base Classes

Shaded: Read from/write to source
White: Does some processing

• In java.io package
•Handle any character in

Unicode set

7

Sept 28, 2020 Sprenkle - CSCI209 8

Console I/O
• Output:

ØSystem.out is a PrintStream object
• Input

ØSystem.in is an InputStream object
Ø Throws exceptions if format of input data is not

correct
• Handle in try/catch

SystemIO.java

8

9/28/20

5

Opening & Closing Streams
• Streams are automatically opened when

constructed

• Close a stream by calling its close() method
ØClose a stream as soon as object is done with it
Ø Free up system resources

Sept 28, 2020 Sprenkle - CSCI209 9

9

Reading & Writing Bytes
• Abstract parent class: InputStream

Øabstract int read()
• reads one byte from the stream and returns it

• Concrete input stream classes override read()
to provide appropriate functionality
Ø e.g., FileInputStream’s read() reads one

byte from a file
• Similarly, OutputStream class has abstract
write() to write a byte to the stream

Sept 28, 2020 Sprenkle - CSCI209 10

10

9/28/20

6

Sept 28, 2020 Sprenkle - CSCI209 12

File Input and Output Streams
•FileInputStream: provides an input stream

that can read from a file
ØConstructor takes the name of the file:

ØOr, uses a File object …

FileInputStream fin = new
FileInputStream("chicken.data");

File inputFile = new File("chicken.data");
FileInputStream fin = new FileInputStream(inputFile);

FileTest.java
12

More Powerful Stream Objects
• DataInputStream

ØReads Java primitive types
through methods such as
readDouble(),
readChar(),
readBoolean()

• DataOutputStream
ØWrites Java primitive types

with writeDouble(),
writeChar(), …

Sept 28, 2020 Sprenkle - CSCI209 13

13

9/28/20

7

Connected Streams

•FileInputStream can read from a file but
has no methods to read numeric types

•DataInputStream can read numeric types
but has no methods to read from a file

• Java allows you to combine two types of streams
into a connected stream
ØFileInputStreamà chocolate
ØDataInputStreamà peanut butter

Sept 28, 2020 Sprenkle - CSCI209 14

Our goal: read numbers from a file

14

Sept 28, 2020 Sprenkle - CSCI209 15

Connected Streams

• Think of a stream as a pipe
• FileInputStream knows how to read from a file
• DataInputStream knows how to read an
InputStream into useful types

• Connect out end of FileInputStream to in end of
DataInputStream…

FileInputStream DataInputStream
double

char
file

Data Source stream
Filtered Stream

Reads from a stream

15

9/28/20

8

Sept 28, 2020 Sprenkle - CSCI209 16

Connecting Streams
• If we want to read numbers from a file

Ø FileInputStream reads bytes from file
Ø DataInputStream handles numeric type reading

• Connect the DataInputStream to the
FileInputStream
ØFileInputStream gets the bytes from the file and
DataInputStream reads them as assembled types

FileInputStream fin = new
FileInputStream("chicken.data");

DataInputStream din = new
DataInputStream(fin);

double num1 = din.readDouble();
“wrap” fin in din

DataIODemo.java
16

Data Source vs. Filtered Streams
Filtered Streams
• Subclasses of
FilterInputStream or
FilterOutputStream

• Always contains/wraps
another stream

• Adds functionality to other
stream, e.g.,
Ø Automatically buffered IO
Ø Automatic compression
Ø Automatic encryption
Ø Automatic conversion

between objects and bytes

Data Source Streams

• Communicate with a
data source
Ø file, byte array, network

socket, or URL

Sept 28, 2020 Sprenkle - CSCI209 17

17

9/28/20

9

Sept 28, 2020 Sprenkle - CSCI209 18

Buffered Streams
• Use a BufferedInputStream object to

buffer your input streams
ØA pipe in the chain that adds buffering
Ø Speeds up access

DataInputStream din = new DataInputStream (
new BufferedInputStream (

new FileInputStream("chicken.data")));

FileInputStream
double

char
file BufferedInputStream DataInputStream

18

Sept 28, 2020 Sprenkle - CSCI209 19

Connected Streams

• What are the tradeoffs for this design decision?
ØWhat would the alternative be?
ØConsider if you maintained the Java libraries
ØConsider as a user of those Java libraries

Combine different types of streams
to get functionality you want

19

9/28/20

10

Sept 28, 2020 Sprenkle - CSCI209 20

Connected Streams

• Alternative: Creating a class for every
combination would result in even more classes
and a lot of redundant code
ØConsider what is required if some functionality must

be updated
Ø Tricky for user to pull together various streams BUT

also would be hard to find the class you want that
has the right combination of functionality

Combine different types of streams
to get functionality you want

20

Sept 28, 2020 Sprenkle - CSCI209 21

Connected Streams: Output

• Similar for output
ØFor buffered output to the file and to write types

•Create a FileOutputStream
•Attach a BufferedOutputStream
•Attach a DataOutputStream
•Perform typed writing using methods of the
DataOutputStream object

Combine different types of streams
to get functionality you want

21

9/28/20

11

TEXT STREAMS

Sept 28, 2020 Sprenkle - CSCI209 22

22

Text Streams
• Previous streams: operate on binary data
• Now: text streams!

• Java uses Unicode to represent
characters/strings and some operating systems
do not
ØNeed something that converts characters from

Unicode to whatever encoding the underlying
operating system uses

Ø Luckily, this is mostly hidden from you
Sept 28, 2020 Sprenkle - CSCI209 23

23

9/28/20

12

Sept 28, 2020 Sprenkle - CSCI209 24

Character Streams: For Text

Abstract Base Classes

Shaded: Read from/write to source
White: Does some processing

• In java.io package
•Handle any character in

Unicode set

24

Text Streams
• Derived from Reader and Writer classes

ØReader and Writer generally refer to text I/O
• Example: Make an input reader of type
InputStreamReader that reads from
keyboard

Øin reads characters from keyboard and converts
them into Unicode for Java

Sept 28, 2020 Sprenkle - CSCI209 25

InputStreamReader in = new
InputStreamReader(System.in);

25

9/28/20

13

Sept 28, 2020 Sprenkle - CSCI209 26

Text Streams and Encodings
• Attach an InputStreamReader to a
FileInputStream

ØAssumes file has been encoded in the default
encoding of underlying OS

•You can specify a different encoding in
constructor of InputStreamReader…

InputStreamReader in = new InputStreamReader(
new FileInputStream("employee.data"));

InputStreamReader in = new InputStreamReader(
new FileInputStream("employee.data"), "UTF-8");

26

Sept 28, 2020 Sprenkle - CSCI209 27

Convenience Classes
• Reading and writing to text files is common
•FileReader

ØConvenience class combines a
InputStreamReader with a
FileInputStream

• Similar for output of text file

is equivalent to
FileWriter out = new FileWriter("output.txt");

OutputStreamWriter out = new OutputStreamWriter(
new FileOutputStream("output.txt"));

27

9/28/20

14

PrintWriter
• Use for writing text output

Ø Easiest writer to use
• Similar to a DataOutputStream,
PrintStream à has methods for printing
various data types

• Methods: print, printf and println
Ø Similar to System.out (a PrintStream) to

display strings

Sept 28, 2020 Sprenkle - CSCI209 28

28

Sept 28, 2020 Sprenkle - CSCI209 29

PrintWriter Example

PrintWriter out = new PrintWriter("output.txt");

String myName = "Homer Simpson";
double mySalary = 35700;

out.print(myName);
out.print(" makes ");
out.print(salary);
out.println(" per year.");

or
out.println(myName + " makes " + salary +

" per year.");

File to write to

29

9/28/20

15

Review: Formatted Output
•printf or format

ØPrintStream added functionality in Java 1.5

Sept 28, 2020 Sprenkle - CSCI209 30

double f1=3.14159, f2=1.45, total=9.43;
// simple formatting...
System.out.printf("%6.5f and %5.2f", f1, f2);
// getting fancy (%n = \n or \r\n)...
System.out.printf("%-6s%5.2f%\n", "Tax:", total);

30

Reading Text from a Stream
• There is no PrintReader class
• Use a BufferedReader

ØConstructor requires a Reader object

• Read file, line-by-line using readLine()
ØReads in a line of text and returns it as a String
ØReturns null when no more input is available

Sept 28, 2020 Sprenkle - CSCI209 32

String line;
while ((line = in.readLine()) != null) {

// process the line
}

BufferedReader in = new BufferedReader(
new FileReader("inputfile.txt"));

32

9/28/20

16

Sept 28, 2020 Sprenkle - CSCI209 33

Reading Text from a Stream
• You can also attach a BufferedReader to

an InputStreamReader:

• Used to be the best way to read from the
console

BufferedReader consoleReader= new BufferedReader(
new InputStreamReader(System.in));

BufferedReader webpageReader = new BufferedReader(
new InputStreamReader(url.openStream());

Note how easy it is to read
from different sources

33

Review: Scanners
• Scanners do not throw IOExceptions!

Ø For a simple console program, main() does not have
to deal with or throw IOExceptions

ØRequired with
BufferedReader/InputStreamReader
combination

• Throws InputMismatchException when
token doesn’t match pattern for expected type
Ø e.g., nextLong() called with next token “AAA”
ØRuntimeException (no catching required)

Sept 28, 2020 Sprenkle - CSCI209 34How do you prevent such errors?

34

9/28/20

17

Console class
• Get a Console object using
System.console()

• Has some useful methods for requesting
passwords

• Issue: does not work through an IDE

Sept 28, 2020 Sprenkle - CSCI209 35

ConsoleUsingConsoleDemo.java

35

Summary: Streams
• Abstraction: streams – sequences of data
• Two categories of classes based on type of data they

handle
Ø Bytes: InputStream OutputStream
Ø Text: Reader Writer

• Two categories of classes based on their source
Ø Data Source (primary source)
Ø Filtered (another stream)

• Can combine streams to get the custom
functionality you want
Ø Convenience classes for some common combinations

Sept 28, 2020 Sprenkle - CSCI209 36

36

9/28/20

18

STANDARD ERROR

Sept 28, 2020 Sprenkle - CSCI209 37

37

Standard Streams
• Preconnected streams

Ø Standard Out: stdout
Ø Standard In: stdin
Ø Standard Error: stderr

• For error messages and diagnostics
• In Java: System.err

Sept 28, 2020 Sprenkle - CSCI209 38

Benefits of two output streams (out and err)?

38

9/28/20

19

Standard Streams
• Preconnected streams

Ø Standard Out: stdout
Ø Standard In: stdin
Ø Standard Error: stderr

• For error messages and diagnostics
• In Java: System.err

• Helpful to have separate streams for output and
error messages
Ø Can save outputs in two different files, e.g., error.log vs

output.log
Ø Eclipse (and other IDEs) differentiates between output

(black text) and error (red text)

Sept 28, 2020 Sprenkle - CSCI209 39

39

Redirecting Output
• Recall earlier this semester

ØRedirected stdout to score.out
Østderr would still go to terminal

• To redirect stderr to same file as well

Sept 28, 2020 Sprenkle - CSCI209 40

$ java OlympicScore > score.out

$ java OlympicScore 1> score.out 2>&1

StandardStreamsExample.java

40

9/28/20

20

COMPILATION

Sept 28, 2020 Sprenkle - CSCI209 41

41

Review
• How is compiling different from interpreting?

ØWhat does the compiler do?

Sept 28, 2020 Sprenkle - CSCI209 42

42

9/28/20

21

Summary:
Compiled vs Interpreted Languages

Compiled
- Spends a lot of time analyzing

and processing the program
• Resulting executable is some

form of machine- specific
binary code

• Computer hardware interprets
(executes) resulting code

ü Program execution is fast
Ø Efficient machine/byte code

generation
Ø Performance gains

Interpreted
ü Relatively little time spent

analyzing and processing
the program

• Resulting code is some sort
of intermediate code

• Another program interprets
resulting code

- Program execution is
relatively slow

ü Faster
development/prototyping

Oct 10, 2016 Sprenkle - CSCI209 43

In pure forms

43

Python Interpreter
1. Validates Python programming language expression(s)

• Enforces Python syntax rules
• Reports syntax errors

2. Executes expression(s)

Sept 28, 2020 Sprenkle - CSCI209 44

Interpreter
(python)

Python
expression

Output Executable
bytecode

Only if no
syntax errors

(not pure interpreting)

44

9/28/20

22

Compiler
(javac)

Java Compiler

• Lexical analysis, parsing, semantic analysis, code
generation, and code optimization

• Code optimization: dead code eliminator, inline
expansion, constant propagation, …

Sept 28, 2020 Sprenkle - CSCI209 45

Java
file

Java
class

Source code Executable code

45

Compiling
• Translates high-level programming language to machine code

or byte code
Ø Java: .java à .class == bytecode
Ø Holistic view of the program

• Compiler optimization techniques
Ø Generate efficient bytecode/machine code
Ø Examples: get rid of unused local variables, transform loops, inline

method calls
Ø In Java: static typing for additional gains

• Can execute generated code multiple times
Ø Performance gain
Ø Interpreted à have to re-verify the code each time executed

Sept 28, 2020 Sprenkle - CSCI209 46

46

9/28/20

23

Compiler Optimization Examples
• What is the optimization?

ØHow does it make the code more efficient?
• For each optimization, should you do these

optimizations yourself? Or, is it something that
only the compiler should do?

Sept 28, 2020 Sprenkle - CSCI209 47

47

Compiler Optimization Examples

Sept 28, 2020 Sprenkle - CSCI209 48

for(int i = 0; i < 10; i++) {
int j = 10;
System.out.println(i + ", " + j);

}

int j = 10;
for(int i = 0; i < 10; i++) {

System.out.println(i + ", " + j);
}

for(int i = 0; i < 10; i++) {
System.out.println(i + ", " + 10);

}

Original:

Optimization 1

Optimization 2

48

9/28/20

24

Compiler Optimization Examples

Sept 28, 2020 Sprenkle - CSCI209 49

for(int i = 0; i < 10; i++) {
if(i == 0) {

System.out.println("Do this");
}
else {

System.out.println("Do that");
}

}
System.out.println("Do this");

for(int i = 1; i < 10; i++) {
System.out.println("Do that");

}
System.out.println("Do this");
System.out.println("Do that");
System.out.println("Do that");
System.out.println("Do that");
…

49

