
9/30/20

1

Objectives
• Compiling
• Java vs Python
• Software Development

Sept 30, 2020 Sprenkle - CSCI209 1

1

Review
1. What is a stream?
2. What are 3 different ways to categorize Java

stream classes?
3. Java provides a bunch of classes that we can

combine to get the functionality we want. What
are the tradeoffs of that design decision?

4. What are the 3 standard streams? (not Java-
specific)
Ø How do we refer to those streams in Java?

Sept 30, 2020 Sprenkle - CSCI209 2

2

9/30/20

2

Review: Standard Streams
• Preconnected streams

Ø Standard Out: stdout
Ø Standard In: stdin
Ø Standard Error: stderr

• For error messages and diagnostics
• In Java: System.err

• Helpful to have separate streams for output and
error messages
Ø Can save outputs in two different files, e.g., error.log vs

output.log
Ø Eclipse (and other IDEs) differentiates between output

(black text) and error (red text)

Sept 30, 2020 Sprenkle - CSCI209 3

java StandardStreamsExample 1> out 2> err

3

Output in Python 3
• print’s documentation

ØDefaults printing to stdout:

• To print to stdout:

• To print to stderr, import sys module

Sept 30, 2020 Sprenkle - CSCI209 4

print("Goes to standard out by default")

print("Goes to standard error", file=sys.stderr)

print(...)
print(value, ..., sep=' ', end='\n',

file=sys.stdout, flush=False)

4

9/30/20

3

Review: Streams

Sept 30, 2020 Sprenkle - CSCI209 5

input stream: an object from which we can
read a sequence of bytes
abstract class: java.io.InputStream

Java handles input/output using streams,
which are sequences of bytes

5

Review: Stream Categories
1. Two categories based on flow of stream

1. Input
2. Output

2. Two categories of classes based on type of data
they handle
1. Bytes: InputStream OutputStream
2. Text: Reader Writer

3. Two categories of classes based on their source
1. Data Source (primary source)
2. Filtered (another stream)

Sept 30, 2020 Sprenkle - CSCI209 6

6

9/30/20

4

Sept 30, 2020 Sprenkle - CSCI209 7

Review: Connected Streams

• Alternative: Creating a class for every
combination would result in even more classes
and a lot of redundant code
ØConsider what is required if some functionality must

be updated
Ø Tricky for user to pull together various streams BUT

also would be hard to find the class you want that
has the right combination of functionality

Combine different types of streams
to get functionality you want

7

Closing Streams
• Through experimentation: Closing the outermost

connected stream will close the inner (wrapped)
stream:

• Closing an already closed stream does not throw
an error

Sept 30, 2020 Sprenkle - CSCI209 8

FileInputStream fis = new FileInputStream("myfile.dat");

BufferedReader br = new BufferedReader(new InputStreamReader(fis));
br.close();

// calling a reading-related method on the fis stream will throw an
// exception because the stream is already closed.
fis.available();

8

9/30/20

5

Summary:
Compiled vs Interpreted Languages

Compiled
- Spends a lot of time analyzing

and processing the program
• Resulting executable is some

form of machine- specific
binary code

• Computer hardware interprets
(executes) resulting code

ü Program execution is fast
Ø Efficient machine/byte code

generation
Ø Performance gains

Interpreted
ü Relatively little time spent

analyzing and processing the
program

• Resulting code is some sort of
intermediate code

• Another program interprets
resulting code

- Program execution is relatively
slow

ü Faster
development/prototyping

Sept 30, 2020 Sprenkle - CSCI209 9

In pure forms

9

Python Interpreter
1. Validates Python programming language expression(s)

• Enforces Python syntax rules
• Reports syntax errors

2. Executes expression(s)

Sept 30, 2020 Sprenkle - CSCI209 10

Interpreter
(python)

Python
expression

Output Executable
bytecode

Only if no
syntax errors

10

9/30/20

6

Review: Compiling
• Translates high-level programming language to machine

code or byte code
Ø Java: .java à .class == bytecode

• Compiler optimization techniques
Ø Generate efficient bytecode/machine code
Ø Examples: get rid of unused local variables, transform loops,

inline method calls
Ø In Java: static typing for additional gains

• Can execute generated code multiple times
Ø Performance gain
Ø Interpreted à have to re-verify the code each time executed

Sept 30, 2020 Sprenkle - CSCI209 11

11

Compiler Optimization Examples*
• What is the optimization?

ØHow does it make the code more efficient?
• For each optimization

Ø Should you transform the code yourself to do that
optimization?

ØOr, is it something that only the compiler should do?

Sept 30, 2020 Sprenkle - CSCI209 12

*Not literally what the code optimizations look like
• Not in Java code but in byte code
• CSCI210 may help illuminate why these decrease runtime

12

9/30/20

7

Compiler Optimization Examples

Sept 30, 2020 Sprenkle - CSCI209 13

for(int i = 0; i < 10; i++) {
int j = 10;
System.out.println(i + ", " + j);

}

int j = 10;
for(int i = 0; i < 10; i++) {

System.out.println(i + ", " + j);
}

for(int i = 0; i < 10; i++) {
System.out.println(i + ", " + 10);

}

Original:

Optimization 1

Optimization 2

13

Compiler Optimization Examples

Sept 30, 2020 Sprenkle - CSCI209 14

for(int i = 0; i < 10; i++) {
if(i == 0) {

System.out.println("Do this");
}
else {

System.out.println("Do that");
}

}
System.out.println("Do this");

for(int i = 1; i < 10; i++) {
System.out.println("Do that");

}
System.out.println("Do this");
System.out.println("Do that");
System.out.println("Do that");
System.out.println("Do that");
…

14

9/30/20

8

Compiler Optimization Examples

Sept 30, 2020 Sprenkle - CSCI209 15

public void f(int i) {
a[0] = i + 0;
a[1] = i * 0;
a[2] = i - i;
a[3] = 1 + i + 1;

}

public void f(int i) {
a[0] = i;
a[1] = 0;
a[2] = 0;
a[3] = i + 2;

}

• Why is the code written like
this? It seems silly!

• Likely after some previous
optimizations
• Ex: know variable is a

constant

15

Compiler Optimization Examples

Sept 30, 2020 Sprenkle - CSCI209 16

int add(int x, int y) {
return x + y;

}

int sub(int x, int y) {
return add(x, -y);

}
int sub(int x, int y) {

return x + -y;
}

int sub(int x, int y) {
return x - y;

}

16

9/30/20

9

Compiler Optimization Examples

Sept 30, 2020 Sprenkle - CSCI209 17

class Parent {
void final f() {

System.out.println("f");
}

}
for(Parent p : parentArray) {

p.f(); // check p’s actual type at runtime
// and execute its method f

}

for(Parent p : parentArray) {
System.out.println("f");

}

Optimization:

17

Compiler Tradeoffs
• Upfront costs

Ø Searching for optimizations
ØMake optimizations

• Typically not Big-Oh efficiency improvements (unless
program is really inefficient)

• Improved runtime
Ø Expect executed many more times than compiled

Sept 30, 2020 Sprenkle - CSCI209 18

18

9/30/20

10

Should You Apply the Optimization?
• Your priority: keeping code abstract to make it

easier to change
• If you can apply the optimization without making

the code harder to change, you should do it

Sept 30, 2020 Sprenkle - CSCI209 19

19

LANGUAGE COMPARISON

Sept 30, 2020 Sprenkle - CSCI209 20

20

9/30/20

11

Language Comparison

Java Python

Sept 30, 2020 Sprenkle - CSCI209 21

21

Language Comparison

Java
• Entirely Object-

oriented*
Ø Functional programming

mimicked through using
just static methods
within a class

• Statically, strongly
typed

• Compiled

Python
• Object-oriented

Ø Also functional programming

• Dynamically, strongly
typed

• Interpreted

Sept 30, 2020 Sprenkle - CSCI209 22

Pros and cons of using each?

22

9/30/20

12

Student’s Analogy

Sept 30, 2020 Sprenkle - CSCI209 23

I think of Python like writing bullet points whereas Java is like
writing full sentences.
Defining an idea with bullet points (aka Python) is doable in
fewer words and is more 'high-level' but has to be interpreted as
a complete idea.

Full sentences (aka Java) have more overhead (capital letters,
periods, etc.) but can be compiled into a complete paragraph
and can be read out loud (executed) more efficiently

23

Rest of the semester
• Shift from learning Java, specifically, to learning

how to develop software (abstractly) with Java
as our implementation/example

• Why Java?
ØPopular language
ØMany frameworks and tools for Java
Ø Java’s structure allows for strict adherence to design

techniques
• Just a start on Java

Ø You’ll need to continue learning more Java on your
own

Sept 30, 2020 Sprenkle - CSCI209 24

24

9/30/20

13

SOFTWARE DEVELOPMENT

“There is no single development, in either technology or in management
technique, that by itself promises even one order-of-magnitude
improvement in productivity, in reliability, in simplicity.” – Fred Brooks

Sept 30, 2020 Sprenkle - CSCI209 25

25

Traditional Software Engineering
Process: Waterfall Model

Sept 30, 2020 Sprenkle - CSCI209 28

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

Validate at each step
Goal: A stage is 100%
complete before moving to
next step

28

9/30/20

14

Feedback in Waterfall Model

Sept 30, 2020 Sprenkle - CSCI209 29

• Problems may be revealed
in later stages
• What happens if problems aren’t

revealed until Acceptance?

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

29

Iterative Design

Sept 30, 2020 Sprenkle - CSCI209 30

Design

Evaluate Implement

Get feedback/
requirements
from users/
clients

Goals: Frequent feedback
à Identify problems early
àHigher quality product

30

9/30/20

15

Spiral Model
• Idea: smaller prototypes

to test/fix/throw away
Ø Finding problems early

costs less
• In general…

Ø Break functionality into
smaller pieces

Ø Implement most
depended-on or highest-
priority features first

Sept 30, 2020 Sprenkle - CSCI209 31

Design

ImplementEvaluate

Prototypes

Radial dimension: cost[Boehm 86]

31

Looking Ahead
• Review slides about testing, JUnit before class

ØCanvas quiz
• Goal: Hands-on lab in class on Friday

Sept 30, 2020 Sprenkle - CSCI209 32

32

