
10/2/20

1

Objectives
• Testing

Oct 2, 2020 Sprenkle - CSCI209 1

1

Review
1. What are differences between compiled and

interpreted languages?
Ø What are the tradeoffs in compiling?

2. Compare and contrast Java and Python
Ø Characteristics
Ø Benefits of each

3. True or False. If the compiler is finding/applying
optimizations to your code, you are writing your
code poorly.

4. What are two models of the software development
process?

Oct 2, 2020 Sprenkle - CSCI209 2

You can and should review previous slides
if you don’t remember answers

2

10/2/20

2

Review:
Compiled vs Interpreted Languages

Compiled
- Spends a lot of time analyzing

and processing the program
• Resulting executable is some

form of machine- specific
binary code

• Computer hardware interprets
(executes) resulting code

ü Program execution is fast
Ø Efficient machine/byte code

generation
Ø Performance gains

Interpreted
ü Relatively little time spent

analyzing and processing the
program

• Resulting code is some sort of
intermediate code

• Another program interprets
resulting code

- Program execution is relatively
slow

ü Faster
development/prototyping

Oct 2, 2020 Sprenkle - CSCI209 3

In pure forms

3

Review: Compiler Tradeoffs
• Upfront costs

Ø Searching for optimizations
ØMake optimizations

• Typically not Big-Oh efficiency improvements (unless
program is really inefficient)

• Improved runtime
Ø Expect executed many more times than compiled

Oct 2, 2020 Sprenkle - CSCI209 4

4

10/2/20

3

Review: Should You Apply the Optimization?

• Your priority: keeping code abstract to make it
easier to change

• If you can apply the optimization without making
the code harder to change, you should do it

Oct 2, 2020 Sprenkle - CSCI209 5

5

Review: Language Comparison

Java
• Entirely Object-

oriented*
Ø Functional programming

mimicked through using
just static methods
within a class

• Statically, strongly
typed

• Compiled

Python
• Object-oriented

Ø Also functional programming

• Dynamically, strongly
typed

• Interpreted

Oct 2, 2020 Sprenkle - CSCI209 6

Pros and cons of using each?

6

10/2/20

4

Review: Waterfall Model

Oct 2, 2020 Sprenkle - CSCI209 8

• Problems may be revealed
in later stages
• What happens if problems aren’t

revealed until Acceptance?

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

8

Review: Spiral Model
• Idea: smaller prototypes

to test/fix/throw away
Ø Finding problems early

costs less
• In general…

Ø Break functionality into
smaller pieces

Ø Implement most
depended-on or highest-
priority features first

Oct 2, 2020 Sprenkle - CSCI209 9

Design

ImplementEvaluate

Prototypes

Radial dimension: cost[Boehm 86]

9

10/2/20

5

CLASSPATH

Oct 2, 2020 Sprenkle - CSCI209 10

10

Classpath
• Tells the compiler or JVM where to look for user-

defined classes and packages
ØOften when using third-party libraries

• Similar to PYTHONPATH

• Typically know it needs to be set when there are
“Class not found” error messages in your code
but you have the appropriate import

Oct 2, 2020 Sprenkle - CSCI209 11

11

10/2/20

6

Setting the Classpath
• Can specify classpath in command line

• Can specify the classpath environment variable
Ø Edit your .bash_profile OR
Ø Set in terminal

• In Eclipse, you can “Configure Build Path” for a
project

Oct 2, 2020 Sprenkle - CSCI209 12

javac -cp path/to/myjavaclasses MyClass.java
java –cp path/to/myjavaclasses MyClass

CLASSPATH=$CLASSPATH:path/to/myjavaclasses
echo $CLASSPATH Current value of CLASSPATH

12

JAR FILES

Oct 2, 2020 Sprenkle - CSCI209 13

13

10/2/20

7

Jar (Java Archive) Files
• Archives of Java files
• Package code into a neat bundle to distribute

Ø Easier, faster to download
Ø Easier for others to use

•jar command: create, view, and extract Jar files
Ø Works similarly to tar
jar cf myapplication.jar *.class

• Run it using java
java -jar myapplication.jar

• Can include jar files in CLASSPATH
Oct 2, 2020 Sprenkle - CSCI209 14

14

Examples from Class
• I provided you with the Game.jar file

ØContained the .class files of my version of the code
• To run, you used the command

java -cp Game.jar Game

• For today’s lab, provided mutants.jar
ØClass files of the mutant versions of the

implementation
ØAdded to Eclipse’s classpath

Oct 2, 2020 Sprenkle - CSCI209 15

The name of the class to execute

15

10/2/20

8

Jar/Tar Commands
• Common options:

• Common use:
Ø jar cfz archive.jar.gz arch_directory
Ø jar xfz archive.jar.gz

Oct 2, 2020 Sprenkle - CSCI209 16

Option/
Operations Meaning

f The name of the archive file
c Create an archive file
x Extract the archive file
v Verbose
z Zip (compress)
t Table of contents (list contents)

16

Jar file: Metadata
• Jar file includes a special metadata file with the

path META-INF/MANIFEST.MF
Ø Say how Jar file is used
Øjar creates a default metadata file, if not specified

Oct 2, 2020 Sprenkle - CSCI209 17

17

10/2/20

9

Jar file: Metadata
• Example metadata file that allows you to execute

the JAR with java

• To create the jar file:
jar cmf myManifest myapplication.jar *.class

• Run it using java
java -jar myapplication.jar

Oct 2, 2020 Sprenkle - CSCI209 18

Specifying the metadata file

Manifest-Version: 1.0
Main-Class: MyApplication

Note the newline

18

Creating Jar Files in Eclipse
• Export à Java à Jar file

ØOptions to create a MANIFEST.MF file
ØOptions to include source files or only class files

Oct 2, 2020 Sprenkle - CSCI209 19

19

10/2/20

10

SOFTWARE TESTING PROCESS

Oct 2, 2020 Sprenkle - CSCI209 20

20

A Bad Role Model

Oct 2, 2020 Sprenkle - CSCI209 21http://imgur.com/HBSbn

21

10/2/20

11

Microsoft Testing
• Beyond their internal testing …

Ø 5 million people beta tested
Ø 60+ years of performance testing
Ø 1 Billion+ Office 2007 sessions

• Still, users found correctness, stability,
robustness, and security bugs

Oct 2, 2020 Sprenkle - CSCI209 22

22

Type 1 Bugs: Compile-Time

• Syntax errors
ØMissing semicolon, parentheses

• Compiler notifies of error
• Cheap, easy to fix

Oct 2, 2020 Sprenkle - CSCI209 23

23

10/2/20

12

Type 2 Bugs: Run-Time

• Usually logic errors
• Expensive to locate, fix

Oct 2, 2020 Sprenkle - CSCI209 24

24

Aside: Objections to “Bug” Terminology

Oct 2, 2020 Sprenkle - CSCI209 25

• “Bug”
Ø Sounds like it’s just an annoyance

• Can simply swat away
ØMinimizes potential problems
ØHides programmer’s responsibility

• Alternative terms
ØDefect
Ø Fault

25

10/2/20

13

Software Testing Process

• Test Suite: set of test cases

Oct 2, 2020 Sprenkle - CSCI209 26

Input Program Actual
Output

Test Case

Program
Under Test

Expected
Output ?

pass or fail

26

Software Testing Process

• Tester plays devil’s advocate
ØHopes to reveal problems in the program using

“good” test cases
ØBetter tester finds than a customer!

Oct 2, 2020 Sprenkle - CSCI209 27

Input Program Output

How is testing different from debugging?

27

10/2/20

14

How Would You Test a Calculator
Program?

• What test cases: input and expected output?

Oct 2, 2020 Sprenkle - CSCI209 28

Numerical
Answer

adds, subtracts,
multiplies, divides

Operands,
operators,
expected

output

Input Calculator
Program

Output

28

Example Test Cases for Calculator Program

• Basic Functionality
Ø Addition
Ø Subtraction
Ø Multiplication
Ø Division
Ø Order of operations

• Invalid Input
Ø Letters, not-operation

characters (&,$, …)

• “Tricky” Cases
Ø Divide by 0
Ø Negative Numbers
Ø Long sequences of

operands, operators
Ø VERY large, VERY small

numbers

Oct 2, 2020 Sprenkle - CSCI209 29

29

10/2/20

15

Software Testing Issues
• How should you test? How often?

ØCode may change frequently
ØCode may depend on others’ code
ØA lot of code to validate

• How do you know that an output is correct?
ØComplex output
ØHuman judgment?

• What caused a code failure?

Oct 2, 2020 Sprenkle - CSCI209 30

➥ Need a systematic, automated,
repeatable approach

30

Levels of Testing
• Unit

Ø Tests minimal software component, in isolation
Ø For us, Class-level testing
Ø Web: Web pages (Http Request)

• Integration
Ø Tests interfaces & interaction of classes

• System
Ø Tests that completely integrated system meets

requirements
• System Integration

Ø Test system works with other systems, e.g., third-
party systems

Oct 2, 2020 Sprenkle - CSCI209 31

Cost increases

31

10/2/20

16

UNIT TESTING

Oct 2, 2020 Sprenkle - CSCI209 32

32

Why Unit Test?
• Verify code works as intended in isolation
• Find defects early in development

Ø Easier to test small pieces
Ø Less cost than at later stages

Oct 2, 2020 Sprenkle - CSCI209 33

33

10/2/20

17

Why Unit Test?
• Verify code works as intended in isolation
• Find defects early in development

Ø Easier to test small pieces
Ø Less cost than at later stages

• As application evolves, new code is more likely to
break existing code
Ø Suite of (small) test cases to run after code changes
ØAlso called regression testing

Oct 2, 2020 Sprenkle - CSCI209 34

34

Some Approaches to Testing Methods
• Typical case

Ø Test typical values of input/parameters
• Boundary conditions

Ø Test at boundaries of input/parameters
Ø Many faults live “in corners”

• Parameter validation
Ø Verify that parameter and object bounds are

documented and checked
Ø Example: pre-condition that parameter isn’t null

Oct 2, 2020 Sprenkle - CSCI209 35

➥All black-box testing approaches

35

10/2/20

18

Another Use of Unit Testing:
Test-Driven Development

• A development style, evolved from Extreme
Programming

• Idea: write tests first without code bias
• The Process:

1. Write tests that code/new functionality should pass
• Like a specification for the code (pre/post conditions)
• All tests will initially fail

2. Write the code and verify that it passes test cases
• Know you’re done coding when you pass all tests

Oct 2, 2020 Sprenkle - CSCI209 36

What assumption does this make?

How do you know you’re “done” in
traditional development?

36

Characteristics of Good Unit Testing

• Automatic
• Thorough
• Repeatable
• Independent

Oct 2, 2020 Sprenkle - CSCI209 37

Why are these characteristics of
good (unit) testing?

37

10/2/20

19

Characteristics of Good Unit Testing
• Automatic

Ø Since unit testing is done frequently, don’t want humans
slowing the process down

Ø Automate executing test cases and evaluating results
Ø Input: in test itself or from a file

• Thorough
Ø Covers all code/functionality/cases

• Repeatable
Ø Reproduce results (correct, failures)

• Independent
Ø Test cases are independent from each other
Ø Easier to trace fault to code

Oct 2, 2020 Sprenkle - CSCI209 38

38

JUNIT

Sprenkle - CSCI209 39Oct 2, 2020

39

10/2/20

20

JUnit Framework
• A framework for unit testing Java programs

Ø Supported by Eclipse and other IDEs
Ø Developed by Erich Gamma and Kent Beck

• Functionality
Ø Write tests

• Validate output, automatically
Ø Automate execution of test suites
Ø Display pass/fail results of test execution

• Stack trace where fails
Ø Organize tests, separate from code

• But, you still need to come up with the tests!

Sprenkle - CSCI209 40

Kent Beck

Erich Gamma

Oct 2, 2020

40

Structure of a JUnit Test
1. Set up the test case (optional)

Ø Example: Creating objects
2. Exercise the code under test
3. Verify the correctness of the results
4. Teardown (optional)

Ø Example: reclaim created objects

Sprenkle - CSCI209 41Oct 2, 2020

41

10/2/20

21

Example Testing the CD class

Sprenkle - CSCI209 42

private CD testCD;

@BeforeEach
public void setUp() {

testCD = new CD("CD title", "CD Artist",
100, 1997, 11, false);

}

@Test
public void testInCollection() {

assertFalse(testCD.isInCollection());
testCD.setInCollection();
assertTrue(testCD.isInCollection());

}

Oct 2, 2020

42

EVALUATING TEST SUITES

Oct 2, 2020 Sprenkle - CSCI209 43

43

10/2/20

22

Evaluating Test Suites
• Software testing research question:

Is my approach to generating a test suite better
than the state-of-the-art test suite generation?

• One approach to answer question:
Fault-based Evaluation
ØGiven known faults (a.k.a. mutants)
ØHow many faults/mutants does my test suite

kill/unveil?
• Kill a fault by creating a test case that fails when

exercising that fault

Oct 2, 2020 Sprenkle - CSCI209 44

44

Lab: Catching the Mutants
• Set Up

ØUse of jar file (contains mutant class files)
ØClasspath – tell compiler/JVM to use JUnit and

mutants.jar

• Objective: Practice writing JUnit test cases
• Goal: reveal all the bugs/mutants!

Oct 2, 2020 Sprenkle - CSCI209 45

45

10/2/20

23

Catching the Mutants: Post-Mortem
• What are the benefits of unit testing/using JUnit?

Ø Consider if you were developing/maintaining the method
Ø How would your testing/development process change?

• Why did the output come out in strange orders
sometimes?

• Is it okay that some mutants passed some of the test
cases?

• Recall the characteristics of good unit tests
Ø How did you achieve them in your testing?

Oct 2, 2020 Sprenkle - CSCI209 46

46

Project 1: Test-Driven Development
• Given: a Car class that only has enough code to compile
• Your job: Create a good set of test cases that
thoroughly/effectively test Car class
Ø Find faults in my faulty version of Car class
Ø Start: look at code, think about how to test, set up JUnit tests
Ø Written analysis of process

• First team project: teams of 3
Ø Practice collaboration (more on Monday)
Ø Every student must commit code to the repository

• Due before class Monday, Oct 12
Ø First step: create teams (and team names!) by Monday’s class

Oct 2, 2020 Sprenkle - CSCI209 47

47

