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Objectives
• Testing
• Collaboration
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Review
1. What tells the compiler/JVM where to find classes?
2. How can we package up Java classes for 

distribution?
3. Describe the general testing process
4. What is a set of test cases called?
5. What is unit testing?
6. What are the benefits of unit testing?
7. What are the characteristics of good unit tests?
8. What are the steps in a JUnit Test Case?

Ø How do we implement those steps?
9. What is test-driven development?
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Review: Software Testing Process

• Test Suite: set of test cases
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Review: Why Unit Test?
• Verify code works as intended in isolation
• Find defects early in development

Ø Easier to test small pieces
Ø Less cost than at later stages

• As application evolves, new code is more likely to 
break existing code
Ø Suite of (small) test cases to run after code changes
ØAlso called regression testing
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Review: Characteristics of Good Unit Testing
• Automatic

Ø Since unit testing is done frequently, don’t want humans 
slowing the process down

Ø Automate executing test cases and evaluating results
Ø Input: in test itself or from a file

• Thorough
Ø Covers all code/functionality/cases

• Repeatable
Ø Reproduce results (correct, failures)

• Independent
Ø Test cases are independent from each other
Ø Easier to trace fault to code
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Review: Structure of a JUnit Test
1. Set up the test case (optional)

Ø Example: Creating objects
Ø @BeforeAll (once per class), @BeforeEach (before each 

test)
2. Exercise the code under test

Ø Within @Test method
3. Verify the correctness of the results

Ø Within @Test method – use assert methods
4. Teardown (optional)

Ø Example: reclaim created objects
Ø @AfterEach (after each test), @AfterAll (once per class)
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Review: Assert Methods
• Defined in  
org.junit.jupiter.api.Assertions
Ø Variety of assert methods available

• If fail, throw an error
• Otherwise, test keeps executing
• All static void
• Example:

assertEquals(Object expected, Object actual)
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@Test
public void addTest() {

… 
assertEquals(4, calculator.add(3, 1));

} 
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Review: Example Testing the CD class
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private CD testCD;

@BeforeEach
public void setUp() {

testCD = new CD("CD title", "CD Artist", 
100, 1997, 11, false);

}

@Test
public void testInCollection() {

assertFalse( testCD.isInCollection() );
testCD.setInCollection();
assertTrue( testCD.isInCollection() );

}

Oct 5, 2020

Exercising the code and verifying its correctness
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Expecting an Exception
• Sometimes an exception is the expected result
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@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class, 
() -> { Object o = emptyList.get(0); } 

);
}

Test case passes only if exception is thrown

Oct 5, 2020
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Expecting an Exception: Breaking It Down
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@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class, 
() -> { Object o = emptyList.get(0); }

);

}

assertThrows(Class<T> expectedType, Executable executable)

How to read assertThrows: 
Execute the executable (after the first ,)
and check if it throws an exception of that type (before the ,) 

Example of a 
Lambda expression
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https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html?is-external=true
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/function/Executable.html
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Expecting an Exception: Breaking It Down (2)
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@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class, 
() -> { Object o = emptyList.get(0); }

);

}

assertThrows(Class<T> expectedType, Executable executable)

How to read assertThrows: 
Execute the highlighted code (in {})
and check if it throws that exception type 

A lot more can be said about lambda expressions… but not now
Oct 5, 2020
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Expecting an Exception
• Can also check characteristics of the thrown 

exception
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@Test
public void testIndexOutOfBoundsException() {
List myList = new ArrayList();
IndexOutOfBoundsException ioobExc = 

assertThrows(IndexOutOfBoundsException.class, () -> {
myList.get(0);

});
System.out.println(ioobExc.getMessage());
assertEquals("Index 0 out of bounds for length 0", 

ioobExc.getMessage());
}

Test case passes only if exception is thrown
and message matches

Oct 5, 2020
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https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html?is-external=true
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/function/Executable.html
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Tracking Down Problems with Lab
• JUnit 5 is backwards-compatible

Ø But, can’t use parts of JUnit 4 and JUnit 5
Ø All one or the other (ish …)

• Why did my code work but yours didn’t?
Ø 2 repositories of code

1. My “source” repo
2. Template repo for your version

• Spent 1+ hour tracking down that I needed to 
change
import org.junit.Test; (JUnit 4) to
import org.junit.jupiter.api.Test; 

(JUnit 5)
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Lab: Catching the Mutants
• Objective: Practice writing JUnit test cases
• Goal: reveal all the bugs/mutants!

• Why designed this way: 
Ø You get feedback on if you’ve tested “enough”
ØPractice testing – knowing how much more you need

to do
• Not typically known in the real world!
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(~10 more minutes)
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Catching the Mutants: Post-Mortem
• What are the benefits of unit testing/using JUnit?

Ø Consider if you were developing/maintaining the method
Ø How would your testing/development process change?

• Why did the output come out in strange orders 
sometimes?

• Is it okay that some mutants passed some of the test 
cases?

• Recall the characteristics of good unit tests
Ø How did you achieve them in your testing?
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Characteristics of Good Unit Testing

• Automatic
• Thorough
• Repeatable
• Independent
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Why are these characteristics of
good (unit) testing?
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Characteristics of Good Unit Testing
• Automatic

Ø Since unit testing is done frequently, don’t want humans 
slowing the process down

Ø Automate executing test cases and evaluating results
Ø Input: in test itself or from a file

• Thorough
Ø Covers all code/functionality/cases

• Repeatable
Ø Reproduce results (correct, failures)

• Independent
Ø Test cases are independent from each other
Ø Easier to trace fault to code
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Review: Test-Driven Development

• A development style, evolved from Extreme 
Programming

• Idea: write tests first without code bias
• The Process:

1. Write tests that code/new functionality should pass
• Like a specification for the code (pre/post conditions)
• All tests will initially fail

2. Write the code and verify that it passes test cases
• Know you’re done coding when you pass all tests
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What assumption does this make?

How do you know you’re “done” in 
traditional development?
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Project: Test-Driven Development
• Given: a Car class that only has enough code to compile
• Your job: Create a good set of test cases that 
thoroughly/effectively test Car class
Ø Find faults in my faulty version of Car class
Ø Start: look at code, think about how to test, set up JUnit tests
Ø Written analysis of process

• First team project: teams of 3
Ø Practice collaboration
Ø Every student must commit code to the repository

• Due before class Monday, Oct 12
Ø First step: create teams (and team names!) today
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How to Implement an Effective Solution
• Understand the problem 
• Understand external constraints
• Design an effective solution to the problem
• While designing the solution, design some tests

to verify that the problem is solved (and remains 
solved)

• Code the effective solution to the problem
• Teach other team members about your solution 

to the problem
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How to Implement an Effective Solution
• Understand the problem (interact with people)
• Understand external constraints (interact with 
people)

• Design an effective solution to the problem
• While designing the solution, design some tests

to verify that the problem is solved (and remains 
solved)

• Code the effective solution to the problem
• Teach other team members about your solution 

to the problem (interact with people)
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Probably interaction with people while designing, testing, and coding too
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Collaboration: Team Project
• Need to talk about the solution
• Discuss your plan, e.g., 

Ø Your system for testing to make sure that you test 
everything

Ø Your assumptions about the Car class
ØOrganization of test cases
ØNaming
ØDivision of labor

• Maintain planning documents too
Ø in GitHub or elsewhere
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Collaboration: Team Project
• Version Control does not eliminate need for 

communication
ØProcess becomes much more difficult if developers 

do not communicate

• Keep the version to be graded in master 
branch

• Before picking up again, pull the repository 
ØGet others’ changes
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Collaboration: Workflow
1. Create a branch for your work

ØCommit periodically
ØWrite descriptive comments so your team members 

know what you did and why
2. Switch back to master
3. Pull master branch
4. Merge your branch into the master branch

Ø Handle merge conflicts
Ø Commit

5. Push master branch
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Looking Ahead
• Testing Project due next Monday

1. THINK
2. DISCUSS as a team
3. Then write the tests

• Teams finalized today
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