
10/5/20

1

Objectives
• Testing
• Collaboration

Oct 5, 2020 Sprenkle - CSCI209 1

1

Review
1. What tells the compiler/JVM where to find classes?
2. How can we package up Java classes for

distribution?
3. Describe the general testing process
4. What is a set of test cases called?
5. What is unit testing?
6. What are the benefits of unit testing?
7. What are the characteristics of good unit tests?
8. What are the steps in a JUnit Test Case?

Ø How do we implement those steps?
9. What is test-driven development?

Oct 5, 2020 Sprenkle - CSCI209 2

2

10/5/20

2

Review: Software Testing Process

• Test Suite: set of test cases

Oct 5, 2020 Sprenkle - CSCI209 3

Input Program Actual
Output

Test Case

Program
Under Test

Expected
Output ?

pass or fail

3

Review: Why Unit Test?
• Verify code works as intended in isolation
• Find defects early in development

Ø Easier to test small pieces
Ø Less cost than at later stages

• As application evolves, new code is more likely to
break existing code
Ø Suite of (small) test cases to run after code changes
ØAlso called regression testing

Oct 5, 2020 Sprenkle - CSCI209 4

4

10/5/20

3

Review: Characteristics of Good Unit Testing
• Automatic

Ø Since unit testing is done frequently, don’t want humans
slowing the process down

Ø Automate executing test cases and evaluating results
Ø Input: in test itself or from a file

• Thorough
Ø Covers all code/functionality/cases

• Repeatable
Ø Reproduce results (correct, failures)

• Independent
Ø Test cases are independent from each other
Ø Easier to trace fault to code

Oct 5, 2020 Sprenkle - CSCI209 5

5

Review: Structure of a JUnit Test
1. Set up the test case (optional)

Ø Example: Creating objects
Ø @BeforeAll (once per class), @BeforeEach (before each

test)
2. Exercise the code under test

Ø Within @Test method
3. Verify the correctness of the results

Ø Within @Test method – use assert methods
4. Teardown (optional)

Ø Example: reclaim created objects
Ø @AfterEach (after each test), @AfterAll (once per class)

Sprenkle - CSCI209 6Oct 5, 2020

6

10/5/20

4

Review: Assert Methods
• Defined in
org.junit.jupiter.api.Assertions
Ø Variety of assert methods available

• If fail, throw an error
• Otherwise, test keeps executing
• All static void
• Example:

assertEquals(Object expected, Object actual)

Sprenkle - CSCI209 7

@Test
public void addTest() {

…
assertEquals(4, calculator.add(3, 1));

}

7

Review: Example Testing the CD class

Sprenkle - CSCI209 8

private CD testCD;

@BeforeEach
public void setUp() {

testCD = new CD("CD title", "CD Artist",
100, 1997, 11, false);

}

@Test
public void testInCollection() {

assertFalse(testCD.isInCollection());
testCD.setInCollection();
assertTrue(testCD.isInCollection());

}

Oct 5, 2020

Exercising the code and verifying its correctness

8

10/5/20

5

Expecting an Exception
• Sometimes an exception is the expected result

Sprenkle - CSCI209 9

@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class,
() -> { Object o = emptyList.get(0); }

);
}

Test case passes only if exception is thrown

Oct 5, 2020

9

Expecting an Exception: Breaking It Down

Sprenkle - CSCI209 10

@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class,
() -> { Object o = emptyList.get(0); }

);

}

assertThrows(Class<T> expectedType, Executable executable)

How to read assertThrows:
Execute the executable (after the first ,)
and check if it throws an exception of that type (before the ,)

Example of a
Lambda expression

Oct 5, 2020

10

https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html?is-external=true
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/function/Executable.html

10/5/20

6

Expecting an Exception: Breaking It Down (2)

Sprenkle - CSCI209 11

@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class,
() -> { Object o = emptyList.get(0); }

);

}

assertThrows(Class<T> expectedType, Executable executable)

How to read assertThrows:
Execute the highlighted code (in {})
and check if it throws that exception type

A lot more can be said about lambda expressions… but not now
Oct 5, 2020

11

Expecting an Exception
• Can also check characteristics of the thrown

exception

Sprenkle - CSCI209 12

@Test
public void testIndexOutOfBoundsException() {
List myList = new ArrayList();
IndexOutOfBoundsException ioobExc =

assertThrows(IndexOutOfBoundsException.class, () -> {
myList.get(0);

});
System.out.println(ioobExc.getMessage());
assertEquals("Index 0 out of bounds for length 0",

ioobExc.getMessage());
}

Test case passes only if exception is thrown
and message matches

Oct 5, 2020

12

https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html?is-external=true
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/function/Executable.html

10/5/20

7

Tracking Down Problems with Lab
• JUnit 5 is backwards-compatible

Ø But, can’t use parts of JUnit 4 and JUnit 5
Ø All one or the other (ish …)

• Why did my code work but yours didn’t?
Ø 2 repositories of code

1. My “source” repo
2. Template repo for your version

• Spent 1+ hour tracking down that I needed to
change
import org.junit.Test; (JUnit 4) to
import org.junit.jupiter.api.Test;

(JUnit 5)

Oct 5, 2020 Sprenkle - CSCI209 13

13

Lab: Catching the Mutants
• Objective: Practice writing JUnit test cases
• Goal: reveal all the bugs/mutants!

• Why designed this way:
Ø You get feedback on if you’ve tested “enough”
ØPractice testing – knowing how much more you need

to do
• Not typically known in the real world!

Oct 5, 2020 Sprenkle - CSCI209 14

(~10 more minutes)

14

10/5/20

8

Catching the Mutants: Post-Mortem
• What are the benefits of unit testing/using JUnit?

Ø Consider if you were developing/maintaining the method
Ø How would your testing/development process change?

• Why did the output come out in strange orders
sometimes?

• Is it okay that some mutants passed some of the test
cases?

• Recall the characteristics of good unit tests
Ø How did you achieve them in your testing?

Oct 5, 2020 Sprenkle - CSCI209 15

15

Characteristics of Good Unit Testing

• Automatic
• Thorough
• Repeatable
• Independent

Oct 5, 2020 Sprenkle - CSCI209 16

Why are these characteristics of
good (unit) testing?

16

10/5/20

9

Characteristics of Good Unit Testing
• Automatic

Ø Since unit testing is done frequently, don’t want humans
slowing the process down

Ø Automate executing test cases and evaluating results
Ø Input: in test itself or from a file

• Thorough
Ø Covers all code/functionality/cases

• Repeatable
Ø Reproduce results (correct, failures)

• Independent
Ø Test cases are independent from each other
Ø Easier to trace fault to code

Sprenkle - CSCI209 17

17

Review: Test-Driven Development

• A development style, evolved from Extreme
Programming

• Idea: write tests first without code bias
• The Process:

1. Write tests that code/new functionality should pass
• Like a specification for the code (pre/post conditions)
• All tests will initially fail

2. Write the code and verify that it passes test cases
• Know you’re done coding when you pass all tests

Oct 5, 2020 Sprenkle - CSCI209 18

What assumption does this make?

How do you know you’re “done” in
traditional development?

18

10/5/20

10

Project: Test-Driven Development
• Given: a Car class that only has enough code to compile
• Your job: Create a good set of test cases that
thoroughly/effectively test Car class
Ø Find faults in my faulty version of Car class
Ø Start: look at code, think about how to test, set up JUnit tests
Ø Written analysis of process

• First team project: teams of 3
Ø Practice collaboration
Ø Every student must commit code to the repository

• Due before class Monday, Oct 12
Ø First step: create teams (and team names!) today

Oct 5, 2020 Sprenkle - CSCI209 19

19

How to Implement an Effective Solution
• Understand the problem
• Understand external constraints
• Design an effective solution to the problem
• While designing the solution, design some tests

to verify that the problem is solved (and remains
solved)

• Code the effective solution to the problem
• Teach other team members about your solution

to the problem

Sept 30, 2020 Sprenkle - CSCI209 20

20

10/5/20

11

How to Implement an Effective Solution
• Understand the problem (interact with people)
• Understand external constraints (interact with
people)

• Design an effective solution to the problem
• While designing the solution, design some tests

to verify that the problem is solved (and remains
solved)

• Code the effective solution to the problem
• Teach other team members about your solution

to the problem (interact with people)

Sept 30, 2020 Sprenkle - CSCI209 21
Probably interaction with people while designing, testing, and coding too

21

Collaboration: Team Project
• Need to talk about the solution
• Discuss your plan, e.g.,

Ø Your system for testing to make sure that you test
everything

Ø Your assumptions about the Car class
ØOrganization of test cases
ØNaming
ØDivision of labor

• Maintain planning documents too
Ø in GitHub or elsewhere

Oct 5, 2020 Sprenkle - CSCI209 22

22

10/5/20

12

Collaboration: Team Project
• Version Control does not eliminate need for

communication
ØProcess becomes much more difficult if developers

do not communicate

• Keep the version to be graded in master
branch

• Before picking up again, pull the repository
ØGet others’ changes

Oct 5, 2020 Sprenkle - CSCI209 23

23

Collaboration: Workflow
1. Create a branch for your work

ØCommit periodically
ØWrite descriptive comments so your team members

know what you did and why
2. Switch back to master
3. Pull master branch
4. Merge your branch into the master branch

Ø Handle merge conflicts
Ø Commit

5. Push master branch

Oct 5, 2020 Sprenkle - CSCI209 24

24

10/5/20

13

Looking Ahead
• Testing Project due next Monday

1. THINK
2. DISCUSS as a team
3. Then write the tests

• Teams finalized today

Oct 5, 2020 Sprenkle - CSCI209 25

25

