
10/12/20

1

Objectives
• Coverage

Ø Strengths, Limitations
Ø Tools: EclEmma

Oct 9, 2020 Sprenkle - CSCI209 1

1

How to Implement an Effective Solution
• Understand the problem
• Understand external constraints
• Design an effective solution to the problem
• While designing the solution, design some tests

to verify that the problem is solved (and remains
solved)

• Code the effective solution to the problem
• Teach other team members about your solution

to the problem

Oct 9, 2020 Sprenkle - CSCI209 2

2

10/12/20

2

How to Implement an Effective Solution
• Understand the problem (interact with people)
• Understand external constraints (interact with
people)

• Design an effective solution to the problem
• While designing the solution, design some tests

to verify that the problem is solved (and remains
solved)

• Code the effective solution to the problem
• Teach other team members about your solution

to the problem (interact with people)

Oct 9, 2020 Sprenkle - CSCI209 3
Probably interacting with people while designing, testing, and coding too

3

Some Approaches to Testing Methods
• Typical case

Ø Test typical values of input/parameters
• Boundary conditions

Ø Test at boundaries of input/parameters
Ø Many faults live “in corners”

• Parameter validation
Ø Verify that parameter and object bounds are

documented and checked
Ø Example: pre-condition that parameter isn’t null

Oct 9, 2020 Sprenkle - CSCI209 4

➥All black-box testing approaches

4

10/12/20

3

Characteristics of Good Unit Testing
• Automatic

Ø Since unit testing is done frequently, don’t want humans
slowing the process down

Ø Automate executing test cases and evaluating results
Ø Input: in test itself or from a file

• Thorough
Ø Covers all code/functionality/cases

• Repeatable
Ø Reproduce results (correct, failures)

• Independent
Ø Test cases are independent from each other
Ø Easier to trace fault to code

Sprenkle - CSCI209 5Oct 9, 2020

5

Review
1. What is code coverage?
2. What are examples of code coverage criteria?
3. Compare the strengths/limitations of each of

those criteria
4. How could you use code coverage/coverage

criteria?
5. Can we use code coverage in the testing

project?

Oct 9, 2020 Sprenkle - CSCI209 6

6

10/12/20

4

Testing Continuum

Oct 9, 2020 Sprenkle - CSCI209 7

No testing Exhaustive
Testing

Branch-
Coverage

Statement-
Coverage

Path-
Coverage

7

Oct 9, 2020 Sprenkle - CSCI209

Comparison of Coverage

Coverage
Criterion Advantages Disadvantages

Statement

Branch

Path

No
testing

Exhaustive
TestingBranchStatement Path

8

8

10/12/20

5

Oct 9, 2020 Sprenkle - CSCI209

Comparison of Coverage

Coverage
Criterion Advantages Disadvantages

Statement Practical Weak, may miss many
faults

Branch Practical, Stronger
than Statement

Weaker than Path

Path Strongest Infeasible, too many
paths to be practical

9

9

How Can We Use Coverage Criteria?

Oct 9, 2020 Sprenkle - CSCI209 10

10

10/12/20

6

Uses of Coverage Criteria
• “Stopping” rule à sufficient testing

ØAvoid unnecessary, redundant tests
• Measure test quality

ØDependability estimate
ØConfidence in estimate

• Specify test cases
ØDescribe additional test cases needed

Oct 9, 2020 Sprenkle - CSCI209 11

11

Coverage Criteria Discussion
• Is it always possible for a test suite to cover all

the statements in a given program?
ØNo. Could be infeasible statements

• Unreachable code
• Legacy code
• Configuration that is not on site

• Do we need the test suite to cover 100% of
statements/branches to believe it is adequate?
Ø 100% coverage does not mean correct program
ØBut < 100% coverage does mean testing inadequacy

Oct 9, 2020 Sprenkle - CSCI209 12

12

10/12/20

7

True/False Quiz
• A program that passes all test cases in a test

suite with 100% path coverage is bug-free.
Ø False.
Ø Examples:

• The test suite may cover a faulty path with data
values that don’t expose the fault.
Ø Towards Exhaustive Testing

• Errors of omission
ØMissing a whole if

Oct 9, 2020 Sprenkle - CSCI209 13

13

Oct 9, 2020 Sprenkle - CSCI209

Example exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a += 2; a -= 10;

if(a > 10)

b *= 2; b /= a;

Test Suite:
3-7: a=3
4-6: a=30
3-6: a=6
4-7: a=9

But, error shows up with
3-7: a=0
4-7: a=10

1

true

true

false

false

2

3 4

5

6 7

8 Could divide

by 0

14

14

10/12/20

8

Oct 9, 2020 Sprenkle - CSCI209

Example exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a += 2; a -= 10;

if(a > 10)

b *= 2; b /= a;

Test Suite:
3-7: a=3
4-6: a=30
3-6: a=6
4-7: a=9

But, error shows up with
3-7: a=0
4-7: a=10

1

true

true

false

false

2

3 4

5

6 7

8 Could divide

by 0

15

Also an error of omission:
• Should have statement 7 within

an if statement that checks
value of a

15

Oct 9, 2020 Sprenkle - CSCI209

Omission Example exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a += 2; a -= 10;

if(a > 10)

b *= 2; b /= a;

1

true

true

false

false

2

3 4

5

6 7

8

16

Consider if the first if block
wasn’t in the code.
You could cover all the
paths, but you’re missing a
crucial condition.

16

10/12/20

9

True/False Quiz
• When you add test cases to a test suite that

covers all statements so that it covers all
branches, the new test suite is more likely to be
better at exposing faults.
Ø True.
Ø You’re adding test cases and covering new paths,

which may have faults.

Oct 9, 2020 Sprenkle - CSCI209 17

17

Oct 9, 2020 Sprenkle - CSCI209

Which Test Suite Is Better?

18

Statement-
adequate
Test Suite

Branch-
adequate
Test Suite

• Branch-adequate suite is not necessarily better
than Statement-adequate suite
Ø Statement-adequate suite could cover buggy paths

and include input value tests that Branch-adequate
suite doesn’t

18

10/12/20

10

Example
• TS1 (Statement-Adequate):

Ø a=0, 6
• TS2 (Branch-Adequate):

Ø a=3, 30
• Statement-adequate will

find fault but branch-
adequate won’t
ØCovers the path that exposes

the fault

Oct 9, 2020 Sprenkle - CSCI209 19

exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a *= 2;

if(a > 10)

b *= 2; b /= a;

19

Software Testing: When is Enough Enough?

• Need to decide when tested enough
ØBalance goals of releasing application, high quality

standards

• Can use program coverage as “stopping” rule
ØAlso measure of confidence in test suite
Ø Statement, Branch, Path and their tradeoffs
ØUse coverage tools to measure statement, branch

coverage
• Still, need to use some other “smarts” besides

program coverage for creating test cases
Oct 9, 2020 Sprenkle - CSCI209 20

20

10/12/20

11

No Silver Bullet
• Recall the Fred Brooks’ quote:

Ø “There is no single development, in either
technology or in management technique, that by
itself promises even one order-of-magnitude
improvement in productivity, in reliability, in
simplicity.”

ØKnown as “no silver bullet”

• Test coverage is one tool that will help us
improve the quality of our code, but it will not
solve everything

Oct 9, 2020 Sprenkle - CSCI209 21

21

COVERAGE TOOLS

Oct 9, 2020 Sprenkle - CSCI209 22

22

10/12/20

12

Coverage Tools
• Coverage is used in practice
• Don’t need to figure out coverage manually
• Available tools to calculate coverage

Ø Examples for Java programs: Cobertura, Clover,
JCoverage, Emma

ØMeasure statement, branch/conditional, method
coverage

Oct 9, 2020 Sprenkle - CSCI209 23

23

Eclipse Plugin: EclEmma for Coverage
• Eclipse can be extended through plugins

ØProvide additional functionality
• EclEmma Plugin

ØRecords executing program’s (or JUnit test case’s)
coverage

ØDisplays coverage graphically
• Built into Enterprise Edition of Eclipse

ØWhat you were supposed to install
Ø If you got the regular version of Eclipse, you’ll need

to install the EclEmma plugin
Oct 9, 2020 Sprenkle - CSCI209 24

24

10/12/20

13

Demonstration
• Execute test with coverage

Oct 9, 2020 Sprenkle - CSCI209 26

26

Note: Coverage and Testing Project
• You won’t be able to leverage coverage for the

testing project
Ø Even if you write code for the Car class, it’s not _my_

code.

• Challenge of test-driven development (TDD)
ØCommon practice in industry

Oct 9, 2020 Sprenkle - CSCI209 27

27

10/12/20

14

More Testing Tools, Frameworks
• Mockito

ØMock objects before have other code
ØAllows you to test in isolation, e.g., mock the

payment system so you focus on your code
• Cucumber

ØBehavior-driven development
Ø Language parser: Gherkin

• Many more

Oct 9, 2020 Sprenkle - CSCI209 28

28

Looking Ahead
• Testing Project due

ØAdded an FAQ
• Updated as I get more questions

ØMonday – before class: Tests due
ØWednesday – 9:59 a.m.: Individual analysis due

• Monday:
Ø Eclipse debugger
ØDesign in the Small

Oct 9, 2020 Sprenkle - CSCI209 29

29

