
10/15/20

1

Objectives
• Code Smells
• Refactoring

Oct 14, 2020 Sprenkle - CSCI209 1

GitHub: main branch instead of master branch

1

Review
1. What is guaranteed in software development?

Ø This informs how we design our code
2. What are some of the best practices in object-

oriented design?
Ø Provide an example of the practice (in our

assignments, in our discussions, in Java, …)
3. What is refactoring?
4. What is the process for writing maintainable

code?

Oct 14, 2020 Sprenkle - CSCI209 2

2

10/15/20

2

Review: Designing Systems

• Questions to consider:
ØHow can we create designs that are stable in the face

of change?
ØHow do we know if our designs aren’t maintainable?
ØWhat can we do if our code isn’t maintainable?

• Answers will help us
ØDesign our own code
ØUnderstand others’ code

Oct 14, 2020 Sprenkle - CSCI209 3

All systems change during their life cycle

3

Review: Overview Best Practices

• (DRY): Don’t repeat yourself
• Single Responsibility Principle
• Shy

ØAvoid Coupling
• Tell, Don’t Ask
• Open-closed principle
• Avoid code smells

Oct 14, 2020 Sprenkle - CSCI209 4

A lot of similar, related fundamental principles

4

10/15/20

3

Review: Process to Write Maintainable Code

• Apply the design principles, but as your code
evolves, you’ll see that you didn’t always adhere
to them

1. Identify code smell

2. Refactor code to remove code smell
3. Test code to confirm code still works

Oct 14, 2020 Sprenkle - CSCI209 5

5

Review: Code Smells

• Duplicated code
• Long method
• Large class
• Long parameter list
• Very similar child classes
• Too many public

variables
• Empty catch clauses

• Switch statements/long if
statements

• Shotgun surgery
• Literals
• Global variables
• Side effects
• Using instanceof

Oct 14, 2020 Sprenkle - CSCI209 6

A hint in the code that something
could be designed better

6

10/15/20

4

Code Smells
• For each of the following code smells, state

ØWhy these may occur in code
ØWhy they are a problem in terms of maintaining

code
ØHow to fix them

• Code smells:
Ø Long methods
Ø Large class
ØMagic numbers (e.g., -1 or 480 in code)
ØComments (non-API/Javadoc comments)

Oct 14, 2020 Sprenkle - CSCI209 7

7

Code Smell: Long Methods
• What’s the problem with long methods?
• What made us write them?
• How can we fix them?
• What is an issue with lots of short methods?

Oct 14, 2020 Sprenkle - CSCI209 8

8

10/15/20

5

Long Methods: Issues and Solutions
• Issues:

ØHard to understand (see) what method does
Ø Smaller methods have reader overhead

• Look at code for called methods
• But, should use descriptive names
• In Eclipse, use F3 to jump to a method’s definition

• Solutions:
Ø Find lines of code that go together (may be identified

by a comment) and extract method

Oct 14, 2020 Sprenkle - CSCI209 9

9

Code Smell: Large Class
• What’s the problem?

Oct 14, 2020 Sprenkle - CSCI209 10

10

10/15/20

6

Large Class
• Issue: Too many instance variables à trying to do

too much
Ø Violates Single Responsibility Principle

• Solutions:
Ø Bundle groups of variables together into another class

• Look for common prefixes or suffixes

Ø If includes optional instance variables (only sometimes
used), create child classes

Ø Look at how users use the class for ideas of how to break
it up

Oct 14, 2020 Sprenkle - CSCI209 11

Eclipse: Refactor à Extract Class or
Extract Superclass

11

Literals or Magic Numbers
• If a number has a special meaning, make it a

constant
• Example: Distinguish between 0 and

NO_VALUE_ASSIGNED
Ø If value changes (e.g., -1 instead of 0), only one place

to change
Ø Less error-prone (e.g., was I using 1 or -1?)

Oct 14, 2020 Sprenkle - CSCI209 12

Eclipse: Refactor à Extract Constant

12

10/15/20

7

Comments

ØDescribe what the code or method is doing
Ø Should be reserved for why, not what

• Solutions:
Ø If need a comment for a block of code (or a long

statement) à create a method with a descriptive
name

Ø If need a comment to describe method, rename
method with more descriptive name

Oct 14, 2020 Sprenkle - CSCI209 13

Problem: Comments used as Febreze to cover up smells

These [internal] comments are different from API comments

13

Code Smell: Using instanceof

• Why isn’t this good code?
ØAlways consider: how is this code likely to change?

• How could we write this in a better way?
Oct 14, 2020 Sprenkle - CSCI209 14

public void drawShape(Shape shape) {
if (shape instanceof Square) {

drawSquare(shape);
}
else if(shape instanceof Circle) {

drawCircle(shape);
}

}

14

10/15/20

8

Code Smell: Using instanceof
• Previous example: had to know all of the Shape

classes
ØUpdate whenever a Shape is added or removed

• Better code: Polymorphic!

Oct 14, 2020 Sprenkle - CSCI209 15

public void drawShape(Shape shape) {
shape.draw();

}

15

Lazy Class
• Problem

ØClass in question doesn’t do much
ØClasses cost time and money to maintain and

understand
• How could this happen?

ØRefactoring!
ØPlanned to be implemented but never happened

• Solution
ØGet rid of class

• Inline or collapse subclass into parent class
Oct 14, 2020 Sprenkle - CSCI209 21

21

10/15/20

9

Speculative Generality
• Beware of too much abstraction, allowing for too

much flexibility that isn’t required

• Solution: Collapse classes

Oct 14, 2020 Sprenkle - CSCI209 22

22

More Code Smells
• Discuss more code smells and solutions (Design

Patterns) later

Oct 14, 2020 Sprenkle - CSCI209 23

23

10/15/20

10

Software Design Rules of Thumb
• Code smells are not always bad

ØDo not always mean code is poorly designed

• Open code is not always bad

• Need to use your judgment
ØGood judgment comes from experience.
ØHow do you get experience? Bad judgment works

every time

Oct 14, 2020 Sprenkle - CSCI209 24
Goal: Gain experience to improve your judgment

24

Refactoring Summary
• Write code and then rewrite code

Ø Eye toward extensibility, flexibility, maintainability, and
readability

Ø Maintain correctness
• Reading/understanding other people’s code can be

difficult
Ø Make your code readable, understandable

• Probably impossible to design/write “correctly” the
first time
Ø A lot harder to get the logic right, make sure you’re not

creating bugs, know/check the right answer…
Ø Don’t necessarily know what is likely to change

Oct 14, 2020 Sprenkle - CSCI209 25

25

10/15/20

11

REFACTORING PRACTICE
Readability, Maintainability, Extensibility

Oct 14, 2020 Sprenkle - CSCI209 26

26

Simulating a Roulette Game

Oct 14, 2020 Sprenkle - CSCI209 27

27

10/15/20

12

Understanding Code
• Execute the code

ØWhat is the main driver for this project?
• What are each class’s responsibilities?

Oct 14, 2020 Sprenkle - CSCI209 28

28

Bug in the Code
• Determining if Odd/Even Bet was won is

incorrect

Oct 14, 2020 Sprenkle - CSCI209 29

29

10/15/20

13

Understanding Code
• Focus: how open is the code to adding new kinds

of bets and how closed it is to modification?
ØHow many classes know about the Bet class?
ØWhat code would need to be added to Game to

allow the user to make another kind of bet that paid
one to one odds and was based on whether the
number spun was high (between 19 and 36) or low
(between 1 and 18)?

Oct 14, 2020 Sprenkle - CSCI209 30

30

Roulette
• Goals

Ø Learn to read, understand someone else’s code
• Refactoring can help

ØRefactor for readability
Ø Justify decisions

• No “right” answer
ØMany design decisions
ØDefend your design decisions in analysis

Oct 14, 2020 Sprenkle - CSCI209 31

31

10/15/20

14

TODO: Assignment 8
• Due next Wednesday

Oct 14, 2020 Sprenkle - CSCI209 32

32

