
10/19/20

1

Objectives
• Refactoring
• Liskov Substitution Principle
• Design Patterns

Oct 19, 2020 Sprenkle - CSCI209 1

1

Review
1. What is guaranteed in software development?

Ø This informs how we design our code
2. What is refactoring?
3. What is the process for writing maintainable

code?
4. What are some code smells and how do we

address them?
Ø What is common to how we address code smells?

5. What is the open-closed principle?
Ø How does it relate to the Roulette code base?

Oct 19, 2020 Sprenkle - CSCI209 2

2

10/19/20

2

Review: Designing Systems

• Questions to consider:
ØHow can we create designs that are stable in the face

of change?
ØHow do we know if our designs aren’t maintainable?
ØWhat can we do if our code isn’t maintainable?

• Answers will help us
ØDesign our own code
ØUnderstand others’ code

Oct 19, 2020 Sprenkle - CSCI209 3

All systems change during their life cycle

3

Review: Process to Write Maintainable Code

• Apply the design principles, but as your code
evolves, you’ll see that you didn’t always adhere
to them

1. Identify code smell

2. Refactor code to remove code smell
3. Test code to confirm code still works

Oct 19, 2020 Sprenkle - CSCI209 4

4

10/19/20

3

Review: Code Smells

• Duplicated code
• Long method
• Large class
• Long parameter list
• Very similar child classes
• Too many public

variables
• Empty catch clauses

• Switch statements/long if
statements

• Shotgun surgery
• Literals
• Global variables
• Side effects
• Using instanceof

Oct 19, 2020 Sprenkle - CSCI209 5

A hint in the code that something
could be designed better

5

Lazy Class
• Problem

ØClass in question doesn’t do much
ØClasses cost time and money to maintain and

understand
• How could this happen?

ØRefactoring!
ØPlanned to be implemented but never happened

• Solution
ØGet rid of class

• Inline or collapse subclass into parent class
Oct 19, 2020 Sprenkle - CSCI209 6

6

10/19/20

4

Speculative Generality
• Beware of too much abstraction, allowing for too

much flexibility that isn’t required

• Solution: Collapse classes

Oct 19, 2020 Sprenkle - CSCI209 7

7

Review: Open-Closed Principle

• Design modules that never change after completely
implemented

• If requirements change, extend behavior by adding
code
Ø By not changing existing code à we won’t create bugs!

• Closed: APIs/interfaces
• Open: add new implementations

Oct 12, 2020 Sprenkle - CSCI209 8

Principle: Software entities (classes, modules,
methods, etc.) should be open for extension

but closed for modification

8

10/19/20

5

LISKOV SUBSTITUTION PRINCIPLE

Oct 19, 2020 Sprenkle - CSCI209 9

9

Liskov Substitution Principle (LSP)
• The substitution principle:

• In other words…

Oct 19, 2020 Sprenkle - CSCI209 10

If for each object o1 of type S there is an object o2 of
type T such that for all programs P defined in terms of T,

the behavior of P is unchanged
when o1 is substituted for o2,

then S is a subtype of T.

If a module is using a base class, then it should
be able to replace the base class with a derived class

without affecting the functioning of the module.

Liskov & Wing, 1994

10

10/19/20

6

Design by Contract
• By Bertrand Meyer (Open-Closed Principle)
• Methods of classes should declare preconditions

and postconditions
ØPreconditions must be met for method to execute
ØAfter executing, postconditions must be true

• Example for Rectangle’s setWidth:
ØmyWidth == newWidth &&
myHeight == oldHeight

Oct 19, 2020 Sprenkle - CSCI209 11

11

Design by Contract and LSP
• Methods of classes should declare preconditions

and postconditions
ØPreconditions must be met for method to execute
ØAfter executing, postconditions must be true

• Example for Rectangle’s setWidth:
ØmyWidth == newWidth &&
myHeight == oldHeight

• For derived/child classes
ØPreconditions can only be weakened
ØPostconditions can only be strengthened
➥Derivatives must adhere to constraints for base class

Oct 19, 2020 Sprenkle - CSCI209 12

12

10/19/20

7

Design by Contract and LSP
• Recall: Programmer interacts with interface, e.g.,

the base class

• For derivatives
ØPreconditions can only be weakened
ØPostconditions can only be strengthened
➥Derivatives must adhere to constraints for base class

Oct 19, 2020 Sprenkle - CSCI209 13

Base
Class

Derived
Class

Interface

What if preconditions are stronger?
What if postconditions are weaker?

13

Rectangle Class

Oct 19, 2020 Sprenkle - CSCI209 14

public class Rectangle {
private int myHeight;
private int myWidth;

public void setWidth(int w) {
myWidth = w;

}

public void setHeight(int h) {
myHeight = h;

}

// getters…
}

14

10/19/20

8

Square Class
• A square is a rectangle

ØBut a rectangle is not a square
• In the interest of code reuse

• Any problems with this implementation?
Ø Inherits:

Oct 19, 2020 Sprenkle - CSCI209 15

public class Square extends Rectangle

private int myHeight;
private int myWidth;
public void setWidth(int w);
public void setHeight(int h);

15

To Keep Square Consistent…

Oct 19, 2020 Sprenkle - CSCI209 16

public void setWidth(int w) {
super.setWidth(w);
super.setHeight(w);

}

public void setHeight(int h) {
super.setWidth(h);
super.setHeight(h);

}

16

10/19/20

9

But What About Users of Classes?
• Consider the test method:

• What happens if a Square object is passed
into method?

Oct 19, 2020 Sprenkle - CSCI209 17

public void testMethod(Rectangle r) {
r.setWidth(5);
r.setHeight(4);
assertEquals(20, r.getWidth()*r.getHeight());

}

17

The Problem
• A Square object is not a Rectangle object
• Behaviors w.r.t. pre-/post-condition contract are

different
• Clients depend on those behaviors

Oct 19, 2020 Sprenkle - CSCI209 18

Lesson: All derivatives of class
must have the same

contract-defined behavior

18

10/19/20

10

Summary of LSP
• Liskov Substitution Principle (a.k.a. design by

contract) is an important feature of programs
that conform to the Open-Closed Principle

• Derived types must be completely substitutable
for their base types

• Derived types can then be modified without
consequence

Oct 19, 2020 Sprenkle - CSCI209 19

19

Liskov Substitution Principle (LSP)
• Named after Barbara Liskov

ØMIT Professor of Engineering
Ø 2008 ACM Turing Award
ØContributions to programming

languages, pervasive computing
Ø Trivia: first woman in the United

States to receive a Ph.D. from a
computer science department
(Stanford, 1968)

Oct 19, 2020 Sprenkle - CSCI209 21Liskov & Wing, 1994

There is an advanced lab machine named after her.

21

10/19/20

11

& Wing
• Jeannette Wing

ØDirector of
Data Science Institute
at Columbia University

ØBig proponent of
computational thinking as assistant
director for Computer and
Information Science and Engineering
at the NSF from 2007 to 2010.

Oct 19, 2020 Sprenkle - CSCI209 22

22

DESIGN PATTERNS
How can we create designs that are stable in the face of change?

Oct 19, 2020 Sprenkle - CSCI209 23

23

10/19/20

12

Design Pattern

• Not a finished design that can be transformed
directly into code

• Description or template for how to solve a
problem that can be used in many different
situations
Ø “Experience reuse” rather than code reuse

Oct 19, 2020 Sprenkle - CSCI209 24

General reusable solution to a commonly
occurring problem in software design

24

Defined Design Patterns
• Software best practices
• Catalogued and discussed in

Design Patterns: Elements of Reusable Object-
Oriented Software
ØWritten by the “Gang of Four”:

Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides
• Erich Gamma also co-wrote JUnit framework

ØDidn’t design the patterns; identified them

Oct 19, 2020 Sprenkle - CSCI209 25

25

10/19/20

13

Understanding Code w/ Design Patterns
1. Recognize design pattern in code base you’re

using
2. Understand code design better

Oct 19, 2020 Sprenkle - CSCI209 26

26

Applying Design Patterns
1. Recognize problem as one that can be solved by

a design pattern
2. Apply pattern to your problem

Oct 19, 2020 Sprenkle - CSCI209 27

Danger: over-applying design patterns
Ø Fall back: Identify and resolve code smells

27

10/19/20

14

Audubon Society calls…
• Need to represent all the different birds

ØVarious flying behaviors (some fly, some don’t)
ØMake different sounds
Ø Examples: Duck, Penguin, Hummingbird, Ostrich,

Chicken, Oriole, …

Oct 19, 2020 Sprenkle - CSCI209 28

How can we represent different birds?

28

Solution Non-Starter: Hierarchy of Classes

• FlyingBird
Ø FlyHighBird

• Eagle
• ...

Ø FlyLowBird
• SingingFlyLowBird
• SquawkingFlyLowBird

• FlightlessBird
Ø…

Oct 19, 2020 Sprenkle - CSCI209 29

Identify what is likely to change/vary
• Flying
• Sound

29

10/19/20

15

Designing Flexible Behaviors
• Include behaviors in abstract Bird class

ØFlyBehavior has performFly() method
ØSoundBehavior has makeSound() method

• Could have setter methods in Bird class to
change these
Ø Example: bird’s wings get clipped

Oct 19, 2020 Sprenkle - CSCI209 30

30

Designing Flexible Behaviors

Oct 19, 2020 Sprenkle - CSCI209 31

public abstract class Bird {
protected FlyBehavior flyB;
protected SoundBehavior soundB;

public Bird() {
…

}

public void performSound() {
soundB.makeSound();

}

public void performFly() {
flyB.performFly();

}
}

31

10/19/20

16

Designing Flexible Behaviors

Oct 19, 2020 Sprenkle - CSCI209 32

public class Duck extends Bird {
//Recall: protected FlyBehavior flyB;
//Recall: protected SoundBehavior soundB;

public Duck() {

}
…

}

What do we need to
do in here?

32

Designing Flexible Behaviors

Oct 19, 2020 Sprenkle - CSCI209 33

public class Duck extends Bird {

public Duck() {
flyB = new FlyHighBehavior();
soundB = new QuackBehavior();

}

} Do we need to do anything else to this class,
with respect to fly and sound behavior?

33

10/19/20

17

How Do We Implement…
• Hummingbird?
• Penguin?
• Ostrich?

Oct 19, 2020 Sprenkle - CSCI209 34

34

Class Diagram

Oct 19, 2020 Sprenkle - CSCI209 35

Bird
FlyBehavior
SoundBehavior
performSound()
performFly()

Duck

UML Diagram

NoFly
performFly()

FlyBehavior
performFly()

FlyHigh
performFly()

SoundBehavior
makeSound()

interface

(Implementations of interface …)

interface

asso
ciati

on

35

10/19/20

18

Unified Modeling Language (UML)
• Standardized general-purpose modeling

language
ØGraphical language for visualizing, specifying and

constructing the artifacts of a software system
• Includes a set of graphical notation techniques to

create abstract models of specific systems
• Used in designing a large system

Ø Focus on big picture, not the code

Oct 19, 2020 Sprenkle - CSCI209 36

36

• Design Pattern: Composition
ØUsing other objects in your class
Ø “Delegate” responsibilities to this object

Oct 19, 2020 Sprenkle - CSCI209 37

Why is composition preferred over inheritance?

Design Principle:
Favor Composition Over Inheritance

37

10/19/20

19

• Design Pattern: Composition
ØUsing other objects in your class
Ø “Delegate” responsibilities to this object

Ø Inheritance à dependence on parent class
• Only want to depend on things you know won’t

change (higher stability)
ØComposition: Provide different behaviors for your

class by plugging in new object
Oct 19, 2020 Sprenkle - CSCI209 38

Why is composition preferred over inheritance?

Design Principle:
Favor Composition Over Inheritance

38

Alternative: Using Interfaces
• We could have a Flyable interface with a
performFly() method and a
Vocalable interface with a makeSound()
method

• Then, each Bird class would implement
Flyable and Chirpable, as appropriate, i.e.,
Ø Implement performFly and chirp methods

Oct 19, 2020 Sprenkle - CSCI209 39

Pros and cons of this solution?

Not covered in class

39

10/19/20

20

Using Interfaces: Pros and Cons
• We could have a Flyable interface with a
performFly() method and a
Vocalable interface with a makeSound()
method

• Then, each Bird class would implement
Flyable and Vocalable, as appropriate, i.e.,
Ø Implement performFly and makeSound

methods
• Pros: Using an interface à more flexible

ØDepending on interface instead of implementation
• Con: Duplicated code, implement in each class

Oct 19, 2020 Sprenkle - CSCI209 40

Not covered in class

40

Comparing Approaches

Oct 19, 2020 Sprenkle - CSCI209 41

FlyHigh

NoFly

Tweet

Squawk

Bird1

Bird2

Composition/Delegation Implement Interfaces

• Bird class is composed of these
behaviors

• Can be easily switched out
• One place to change

implementation

Bird1
• performFly

• Fly high impl
• makeSound

• Squawk impl

Bird2
• performFly

• No fly impl
• makeSound

• Tweet impl

• May need to duplicate
implementing interface

Consider what
this looks like

as we add
more bird

classes

Not covered in class

41

10/19/20

21

Dependency Inversion Principle

Oct 19, 2020 Sprenkle - CSCI209 42

Depend upon
abstractions

42

Exam 2 Discussion
• Similar format to Exam 1

Ø Timed (70 minutes), online
ØOpen book/notes/slides NOT internet
Ø 3 “sections” – very short answer, short answer,

applied
ØOpen Friday at 9:30 a.m. through Sunday at 11:59

p.m.
• Content covers through Wednesday’s class
• I will hold office hours during Friday class time

Oct 19, 2020 Sprenkle - CSCI209 43

43

10/19/20

22

Looking Ahead
• Assignment 8

ØDeadline extended to Thursday at 11:59 p.m.
• Clone the code for Wednesday’s lab
• Exam - Fri - Sun

Oct 19, 2020 Sprenkle - CSCI209 44

44

