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Objectives
• Final Project
• Analysis and Design
• Interpreting programming languages

Oct 26, 2020 Sprenkle - CSCI209 1

1

Picasso Specification
• User can enter expressions

Ø Interactively or from file
Ø Language is defined in specification

• Many possible extensions
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Project Deliverables Timeline

Deliverable Who Weight Due Date
Preparation Analysis Individual 10% Fri, Oct 30

Preliminary
Implementation Team 30% Mon, 11/9

Final Implementation Team 45% You decide
àlatest 11/19

Analysis Individual 15% Fri, Nov 20
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Week 1: Understand code base, analyze/plan project
Week 2: Implement preliminary functionality
Weeks 3-4: Implement final version of application 
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ANALYSIS & DESIGN: FORMALIZED
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Analysis Phase
• Create an abstract model in client’s vocabulary 
• Strategy: 

1. Identify classes that model (shape) system as set of 
abstractions

2. Determine each class’s purpose or main 
responsibility
• member functions
• data members

3. Determine helper classes for each
• Help complete responsibilities
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“Doohickey”
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Analysis Phase Discussion
• Expect to iterate

ØWon’t find all classes at first
• Especially helpers

ØWon’t know all responsibilities
• Uncertainty in problem statement

ØMay be concerns that need to be settled
Ø Try to understand requested software system at 

level of those requesting software 
• Rarely one true correct best design

Oct 26, 2020 Sprenkle - CSCI209 6

6



10/26/20

4

Identification of Classes
• Potentially model the system
• Usually nouns from problem description or from 

domain knowledge
• Model real world/problem domain whenever 

possible
ØMore understandable software
ØHelps during maintenance when someone unfamiliar 

with system must update/fix code
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Identifying Responsibilities
• Responsibilities convey purpose of class, its role 

in system
• Questions to Ask:

ØWhat are the other responsibilities needed to model 
the solution?
• Which class should take on this particular 

responsibility?
ØWhat classes help another class fulfill its 

responsibility? 
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Have You Modeled Everything?
• Strategy: Role playing
• Act as different classes: can you do everything 

you want in various scenarios?
Ø Fill in missing classes, responsibilities
ØMethods: parameters, what returned
ØRestructure as necessary

• No code yet so not actually refactoring
• Example use cases/scenarios:

ØUser borrows a video and returns it two days late
ØUser tries to borrow book that is already checked out
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Definition of Use Case?
• Description of steps or actions between a user 

and a software system towards some goal

• What else can use cases be used for?
Ø Test Cases!
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TEAM FINAL PROJECT

Oct 26, 2020 Sprenkle - CSCI209 11

11

Teams

BuildingBlocks Abdul August Danny Taylor Will

Duplos Bryan Callie Jacob Leslie

Linkimals Dan Jay Nick Sam

MegaBlocks Dominque Jeremy Katie Raul

JigsawPuzzles Hayden James Laurie Tara
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Teams, alphabetically by first name

Team toy analogy: individual pieces make a greater whole.
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Project Metrics
• >1700 lines of code

Ø Even more by the time your team is done

• Good for gaining experience
Ø Large (for a course) piece of existing code that you 

need to build on

• Good for job interviews
ØKnow the number of lines of code
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Picasso Specification
• User can enter expressions

Ø Interactively or from file
Ø Language is defined in specification

• Many possible extensions
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Picasso Project Overview
• Goal: Generate images from expressions
• Every pixel at position (x,y) gets assigned a color, 

computed from its x and y coordinate and 
the given expression
Ø Range for x and y is [-1, 1]

• Colors are represented as RGB 
[red, green, blue] values
Ø Component’s range [-1, 1]
Ø Black is [-1,-1,-1]
Ø Red is [1,-1,-1]
Ø Yellow is [1, 1,-1]
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-1, -1 x

y

1, 1

1, -1

-1, 1

How is white represented?

Points are (x,y)
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Generating Images from Expressions
• Expressions at a specific (x,y) point/pixel 

evaluate to RGB colors [r,g,b]
Ø pixels[x][y] = expression.evaluate(x, y)

• x evaluates to RGB color [x, x, x] 
• In top right corner,
• x evaluates to [1, 1, 1]
• y evaluates to [-1, -1, -1]
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Generating Images from Expressions
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-1, -1 x

y

1, 1

1, -1

-1, 1

For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

What is the resulting image if the expression is 
• [-1, 1, -1] ?
• x ?
• x*y ?

Consider evaluating expression 
as f(x, y) = expression 
at various points in the image
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Generated Images from Expressions
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For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

[-1, 1, -1] x x*y

If you click “Evaluate” in Picasso currently, 
it evaluates the expression floor(y)
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Programming Language Syntax & Semantics

• What are the rules for an identifier in Java?
• What does an assignment statement look like in 

Java?
ØWhat can be on the left hand side?
ØWhat can be on the right hand side?

• What does a multiplication expression look like?
• How do we evaluate arithmetic expressions?
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Programming Language Design
• Must be unambiguous

ØProgramming Language defines a syntax and 
semantics

• Interpreting programming languages
1. Parse program into tokens
2. Verify that tokens are in a valid form
3. Generate executable code
4. Execute code
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Parsing into Tokens
• Example: x = 4*3; à

• Example: x = * 3 5;

• Tokenizer doesn’t care if statement is not valid
Øhandled in next step

• Error example: 1x = 4**3;
Ø 1x and ** are not valid tokens in Java
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<id> <assignment> <num> <mult> <num> <endofstmt>

<id> <assignment> <mult> <num> <num> <endofstmt>
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Interpreting the Picasso Language
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Interpreting the Picasso Language
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Lexical 
Analyzer

Semantic 
Analyzer

Error

Error

Expression 
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<mult>
<y>
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What We Need to Do/Represent
• Lexical Analysis

• Semantic Analysis

• Evaluation
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What We Need to Do/Represent
• Lexical Analysis

ØRecognize/create tokens
ØReport errors in creating tokens

• Semantic Analysis
ØConvert infix tokens into postfix

• Report errors
ØParse tokens into expressions (expression tree)

• Report errors

• Evaluation
Ø Evaluate expressions
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Understanding the Code
• How does the given code map to lexical analysis, 

semantic analysis, and evaluation components?
Ø Look for packages, classes that map to these steps
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Interpreting the Picasso Language
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Lexical 
Analyzer

Semantic 
Analyzer

Error

Error

Expression 
Tree

Interpreter

Picasso 
Expression

TokenTokenTokens

OR

OR

Evaluation of 
expression

Draw on 
canvas

tokens

parser
expressions

Tokenizer, Java’s StreamTokenizer
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Understanding the Code:
Lexical Analysis
• Process

Øpicasso.parser.Tokenizer
Øpicasso.parser.tokens.TokenFactory

• Output: 
Øpicasso.parser.tokens.*
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FloorToken
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Understanding the Code:
Semantic Analysis
• Process

Øpicasso.parser.ExpressionTreeGenerat
or

Øpicasso.parser.SemanticAnalyzer
Øpicasso.parser.*Analyzer

• Output
Øpicasso.parser.language.expressions.
*
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FloorAnalyzer
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Understanding the Code: Evaluation
• Process

Øpicasso.parser.language.
ExpressionTreeNode

• Output: 
ØRGBColor

• Displayed in PixMap on Canvas
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Floor
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Understanding the Code: Evaluation
• Key Parent class: 
picasso.parser.language.ExpressionTreeNode

public abstract RGBColor evaluate(double x, double y);

• “Old” version of expressions:
ØReferenceForExpressionEvaluations
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Understanding Code
• Run program

ØWhat does each button do?

• Start at Main.java
Ø Follow calls to see where program goes

• Breadth or depth-first search
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This Week: Project Preparation
• Read over the Picasso (Final Project) 

specifications again
• 1st deliverable is a document that answers

ØWhat needs to be completed?
ØWhat is your plan for completing those tasks?
ØWhat tasks are you most interested in working on?
Ø….

• Friday
ØDiscuss your plans, questions
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TODO
• Project Analysis due Friday
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