
10/26/20

1

Objectives
• Final Project
• Analysis and Design
• Interpreting programming languages

Oct 26, 2020 Sprenkle - CSCI209 1

1

Picasso Specification
• User can enter expressions

Ø Interactively or from file
Ø Language is defined in specification

• Many possible extensions

Oct 26, 2020 Sprenkle - CSCI209 2

2

10/26/20

2

Project Deliverables Timeline

Deliverable Who Weight Due Date
Preparation Analysis Individual 10% Fri, Oct 30

Preliminary
Implementation Team 30% Mon, 11/9

Final Implementation Team 45% You decide
àlatest 11/19

Analysis Individual 15% Fri, Nov 20

Oct 26, 2020 Sprenkle - CSCI209 3

Week 1: Understand code base, analyze/plan project
Week 2: Implement preliminary functionality
Weeks 3-4: Implement final version of application

3

ANALYSIS & DESIGN: FORMALIZED

Oct 26, 2020 Sprenkle - CSCI209 4

4

10/26/20

3

Analysis Phase
• Create an abstract model in client’s vocabulary
• Strategy:

1. Identify classes that model (shape) system as set of
abstractions

2. Determine each class’s purpose or main
responsibility
• member functions
• data members

3. Determine helper classes for each
• Help complete responsibilities

Oct 26, 2020 Sprenkle - CSCI209 5

“Doohickey”

5

Analysis Phase Discussion
• Expect to iterate

ØWon’t find all classes at first
• Especially helpers

ØWon’t know all responsibilities
• Uncertainty in problem statement

ØMay be concerns that need to be settled
Ø Try to understand requested software system at

level of those requesting software
• Rarely one true correct best design

Oct 26, 2020 Sprenkle - CSCI209 6

6

10/26/20

4

Identification of Classes
• Potentially model the system
• Usually nouns from problem description or from

domain knowledge
• Model real world/problem domain whenever

possible
ØMore understandable software
ØHelps during maintenance when someone unfamiliar

with system must update/fix code

Oct 26, 2020 Sprenkle - CSCI209 7

7

Identifying Responsibilities
• Responsibilities convey purpose of class, its role

in system
• Questions to Ask:

ØWhat are the other responsibilities needed to model
the solution?
• Which class should take on this particular

responsibility?
ØWhat classes help another class fulfill its

responsibility?

Oct 26, 2020 Sprenkle - CSCI209 8

8

10/26/20

5

Have You Modeled Everything?
• Strategy: Role playing
• Act as different classes: can you do everything

you want in various scenarios?
Ø Fill in missing classes, responsibilities
ØMethods: parameters, what returned
ØRestructure as necessary

• No code yet so not actually refactoring
• Example use cases/scenarios:

ØUser borrows a video and returns it two days late
ØUser tries to borrow book that is already checked out

Oct 26, 2020 Sprenkle - CSCI209 9

9

Definition of Use Case?
• Description of steps or actions between a user

and a software system towards some goal

• What else can use cases be used for?
Ø Test Cases!

Oct 26, 2020 Sprenkle - CSCI209 10

10

10/26/20

6

TEAM FINAL PROJECT

Oct 26, 2020 Sprenkle - CSCI209 11

11

Teams

BuildingBlocks Abdul August Danny Taylor Will

Duplos Bryan Callie Jacob Leslie

Linkimals Dan Jay Nick Sam

MegaBlocks Dominque Jeremy Katie Raul

JigsawPuzzles Hayden James Laurie Tara

Oct 26, 2020 Sprenkle - CSCI209 12

Teams, alphabetically by first name

Team toy analogy: individual pieces make a greater whole.

12

10/26/20

7

Project Metrics
• >1700 lines of code

Ø Even more by the time your team is done

• Good for gaining experience
Ø Large (for a course) piece of existing code that you

need to build on

• Good for job interviews
ØKnow the number of lines of code

Oct 26, 2020 Sprenkle - CSCI209 13

13

Picasso Specification
• User can enter expressions

Ø Interactively or from file
Ø Language is defined in specification

• Many possible extensions

Oct 26, 2020 Sprenkle - CSCI209 14

14

10/26/20

8

Picasso Project Overview
• Goal: Generate images from expressions
• Every pixel at position (x,y) gets assigned a color,

computed from its x and y coordinate and
the given expression
Ø Range for x and y is [-1, 1]

• Colors are represented as RGB
[red, green, blue] values
Ø Component’s range [-1, 1]
Ø Black is [-1,-1,-1]
Ø Red is [1,-1,-1]
Ø Yellow is [1, 1,-1]

Oct 26, 2020 Sprenkle - CSCI209 15

-1, -1 x

y

1, 1

1, -1

-1, 1

How is white represented?

Points are (x,y)

15

Generating Images from Expressions
• Expressions at a specific (x,y) point/pixel

evaluate to RGB colors [r,g,b]
Ø pixels[x][y] = expression.evaluate(x, y)

• x evaluates to RGB color [x, x, x]
• In top right corner,
• x evaluates to [1, 1, 1]
• y evaluates to [-1, -1, -1]

Oct 26, 2020 Sprenkle - CSCI209 16

-1, -1 x

y

1, 1

1, -1

-1, 1

16

10/26/20

9

Generating Images from Expressions

Oct 26, 2020 Sprenkle - CSCI209 17

-1, -1 x

y

1, 1

1, -1

-1, 1

For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

What is the resulting image if the expression is
• [-1, 1, -1] ?
• x ?
• x*y ?

Consider evaluating expression
as f(x, y) = expression
at various points in the image

17

Generated Images from Expressions

Oct 26, 2020 Sprenkle - CSCI209 18

For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

[-1, 1, -1] x x*y

If you click “Evaluate” in Picasso currently,
it evaluates the expression floor(y)

18

10/26/20

10

Programming Language Syntax & Semantics

• What are the rules for an identifier in Java?
• What does an assignment statement look like in

Java?
ØWhat can be on the left hand side?
ØWhat can be on the right hand side?

• What does a multiplication expression look like?
• How do we evaluate arithmetic expressions?

Oct 26, 2020 Sprenkle - CSCI209 19

19

Programming Language Design
• Must be unambiguous

ØProgramming Language defines a syntax and
semantics

• Interpreting programming languages
1. Parse program into tokens
2. Verify that tokens are in a valid form
3. Generate executable code
4. Execute code

Oct 26, 2020 Sprenkle - CSCI209 20

20

10/26/20

11

Parsing into Tokens
• Example: x = 4*3; à

• Example: x = * 3 5;

• Tokenizer doesn’t care if statement is not valid
Øhandled in next step

• Error example: 1x = 4**3;
Ø 1x and ** are not valid tokens in Java

Oct 26, 2020 Sprenkle - CSCI209 21

<id> <assignment> <num> <mult> <num> <endofstmt>

<id> <assignment> <mult> <num> <num> <endofstmt>

21

Interpreting the Picasso Language

Oct 26, 2020 Sprenkle - CSCI209 22

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

OR

OR

Evaluation of
expression

Draw on
canvas

22

10/26/20

12

Interpreting the Picasso Language

Oct 26, 2020 Sprenkle - CSCI209 23

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

OR

Mult

X Y
OR

Evaluation of
expression

Draw on
canvas

x*y

<x>
<mult>
<y>

23

What We Need to Do/Represent
• Lexical Analysis

• Semantic Analysis

• Evaluation

Oct 26, 2020 Sprenkle - CSCI209 24

24

10/26/20

13

What We Need to Do/Represent
• Lexical Analysis

ØRecognize/create tokens
ØReport errors in creating tokens

• Semantic Analysis
ØConvert infix tokens into postfix

• Report errors
ØParse tokens into expressions (expression tree)

• Report errors

• Evaluation
Ø Evaluate expressions

Oct 26, 2020 Sprenkle - CSCI209 25

25

Understanding the Code
• How does the given code map to lexical analysis,

semantic analysis, and evaluation components?
Ø Look for packages, classes that map to these steps

Oct 26, 2020 Sprenkle - CSCI209 26

26

10/26/20

14

Interpreting the Picasso Language

Oct 26, 2020 Sprenkle - CSCI209 27

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

OR

OR

Evaluation of
expression

Draw on
canvas

tokens

parser
expressions

Tokenizer, Java’s StreamTokenizer

27

Understanding the Code:
Lexical Analysis
• Process

Øpicasso.parser.Tokenizer
Øpicasso.parser.tokens.TokenFactory

• Output:
Øpicasso.parser.tokens.*

Oct 26, 2020 Sprenkle - CSCI209 28

FloorToken

28

10/26/20

15

Understanding the Code:
Semantic Analysis
• Process

Øpicasso.parser.ExpressionTreeGenerat
or

Øpicasso.parser.SemanticAnalyzer
Øpicasso.parser.*Analyzer

• Output
Øpicasso.parser.language.expressions.
*

Oct 26, 2020 Sprenkle - CSCI209 29

FloorAnalyzer

29

Understanding the Code: Evaluation
• Process

Øpicasso.parser.language.
ExpressionTreeNode

• Output:
ØRGBColor

• Displayed in PixMap on Canvas

Oct 26, 2020 Sprenkle - CSCI209 30

Floor

30

10/26/20

16

Understanding the Code: Evaluation
• Key Parent class:
picasso.parser.language.ExpressionTreeNode

public abstract RGBColor evaluate(double x, double y);

• “Old” version of expressions:
ØReferenceForExpressionEvaluations

Oct 26, 2020 Sprenkle - CSCI209 31

31

Understanding Code
• Run program

ØWhat does each button do?

• Start at Main.java
Ø Follow calls to see where program goes

• Breadth or depth-first search

Oct 26, 2020 Sprenkle - CSCI209 32

32

10/26/20

17

This Week: Project Preparation
• Read over the Picasso (Final Project)

specifications again
• 1st deliverable is a document that answers

ØWhat needs to be completed?
ØWhat is your plan for completing those tasks?
ØWhat tasks are you most interested in working on?
Ø….

• Friday
ØDiscuss your plans, questions

Oct 26, 2020 Sprenkle - CSCI209 33

33

TODO
• Project Analysis due Friday

Oct 26, 2020 Sprenkle - CSCI209 34

34

