
10/30/20

1

Objectives
• Picasso Design
• Reflection
• GUIs in Java

ØAnonymous inner classes

Oct 28, 2020 Sprenkle - CSCI209 1

1

Typical Trajectory of Projects

Oct 28, 2020 Sprenkle - CSCI209 2

This code is too complex!
I can’t understand this/do this project!

Time committed to project

U
nd

er
st

an
di

ng
/c

on
fid

en
ce

2

10/30/20

2

Typical Trajectory of Projects

Oct 28, 2020 Sprenkle - CSCI209 3

This code is too complex!
I can’t understand this/do this project!

I am starting to get it.
I have the mental model for the code base

Time committed to project

U
nd

er
st

an
di

ng
/c

on
fid

en
ce

3

Typical Trajectory of Projects

Oct 28, 2020 Sprenkle - CSCI209 4

This code is too complex!
I can’t understand this/do this project!

I am starting to get it.
I have the mental model for the code base

I am confident enough to write a little code

Time committed to project

U
nd

er
st

an
di

ng
/c

on
fid

en
ce

4

10/30/20

3

Typical Trajectory of Projects

Oct 28, 2020 Sprenkle - CSCI209 5

This code is too complex!
I can’t understand this/do this project!

I am starting to get it.
I have the mental model for the code base

I am confident enough to write a little code

I get it! I am writing code
and redesigning as necessary

Time committed to project

U
nd

er
st

an
di

ng
/c

on
fid

en
ce

5

Our Responsibilities

Oct 28, 2020 Sprenkle - CSCI209 6

This code is too complex!
I can’t understand this/do this project!

I am starting to get it.
I have the mental model for the code base

I am confident enough to write a little code

I get it! I am writing code
and redesigning as necessary

Time committed to project

U
nd

er
st

an
di

ng
/c

on
fid

en
ce

You: Adopt a growth mindset.
Try, Learn, Ask questions

Me: Support, Cheerlead, Answer questions

6

10/30/20

4

Review
• What is the goal of the Picasso project?
• When you click the Evaluate button in the given

version of Picasso, it generates the image for
floor(y)
Ø Explain why the image looks as it does:

• How does an interpreter interpret a programming
language?
Ø How do those steps map to the Picasso code base?

• What should we think about during design and
analysis of a project?
Ø What are best practices?

Oct 28, 2020 Sprenkle - CSCI209 7

7

Review: Picasso Project Overview
• Goal: Generate images from expressions
• Every pixel at position (x,y) gets assigned a color,

computed from its x and y coordinate and
the given expression
Ø Range for x and y is [-1, 1]

• Colors are represented as RGB
[red, green, blue] values
Ø Component’s range [-1, 1]
Ø Black is [-1,-1,-1]
Ø Red is [1,-1,-1]
Ø Yellow is [1, 1,-1]

Oct 26, 2020 Sprenkle - CSCI209 8

-1, -1 x

y

1, 1

1, -1

-1, 1

Points are (x,y)

8

10/30/20

5

Review: Generating Images from Expressions

• Expressions at a specific (x,y) point/pixel
evaluate to RGB colors [r,g,b]
Ø pixels[x][y] = expression.evaluate(x, y)

• x evaluates to RGB color [x, x, x]
• In top right corner,
• x evaluates to [1, 1, 1]
• y evaluates to [-1, -1, -1]

Oct 26, 2020 Sprenkle - CSCI209 9

-1, -1 x

y

1, 1

1, -1

-1, 1

9

Review: Generated Expressions

Oct 28, 2020 Sprenkle - CSCI209 10

For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

[-1, 1, -1] x x*y

10

10/30/20

6

Review: Programming Language Design
• Must be unambiguous

ØProgramming Language defines a syntax and
semantics

• Interpreting programming languages
1. Parse program into tokens
2. Verify that tokens are in a valid form
3. Generate executable code
4. Execute code

Oct 26, 2020 Sprenkle - CSCI209 11

11

Review:
Interpreting the Picasso Language

Oct 26, 2020 Sprenkle - CSCI209 12

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

OR

OR

Evaluation of
expression

Draw on
canvas

12

10/30/20

7

Interpreting the Picasso Language

Oct 26, 2020 Sprenkle - CSCI209 13

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

OR

OR

Evaluation of
expression

Draw on
canvas

tokens.*

parser.*
expressions.*

Tokenizer,
Java’s StreamTokenizer

13

Process of Understanding Code:
Building Your Mental Model
• Apply spiral model to understanding code
• Review problem specification (low-cost effort)
• Explore code at the top-level (low-cost effort)

Ø Look at packages, class names
ØDon’t take a deep-dive until you have the bigger

picture

Oct 28, 2020 Sprenkle - CSCI209 14

14

10/30/20

8

Process of Understanding Code:
Building Your Mental Model
• Look for important words/terms from problem

domain
• Look for terms from design patterns
• Put code in black boxes or group code together
• Example:

Oct 28, 2020 Sprenkle - CSCI209 15

Lexical
Analyzer

Picasso
Expression TokenTokenTokens

tokens.*
Tokenizer,
Java’s StreamTokenizer

15

Process of Understanding Code:
Building Your Mental Model
• After you have the big picture, look at most

important classes
• Decide: Does this class merit a closer look? Or do I

just need the big picture of what it does?
Ø Lean towards the latter towards the beginning

• Iterate!
Ø Grow your mental model
Ø What a “closer look” means changes over time

• Early: what methods does the class have? What classes
does this object interact with?

• Later: what do these methods do? How does this class
interact with other objects?

Oct 28, 2020 Sprenkle - CSCI209 16

16

10/30/20

9

Interpreting the Picasso Language

Oct 26, 2020 Sprenkle - CSCI209 17

Lexical
Analyzer

Semantic
Analyzer

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

Mult

X Y

Evaluation of
expression

Draw on
canvas

x*y
<id:x>
<mult>
<id:y>

17

Interpreting the Picasso Language

Oct 26, 2020 Sprenkle - CSCI209 18

Lexical
Analyzer

Semantic
Analyzer

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

Floor

Y

Evaluation of
expression

Draw on
canvas

floor(y) <floor>
<lparen>
<id:y>
<rparen>

18

10/30/20

10

Understanding the Code:
Lexical Analysis
• Process

Øpicasso.parser.Tokenizer
Øpicasso.parser.tokens.TokenFactory

• Output:
Øpicasso.parser.tokens.*

Oct 26, 2020 Sprenkle - CSCI209 19

FloorToken

19

Understanding the Code:
Semantic Analysis
• Process

Øpicasso.parser.ExpressionTreeGenerat
or

Øpicasso.parser.SemanticAnalyzer
Øpicasso.parser.*Analyzer

• Output
Øpicasso.parser.language.expressions.
*

Oct 26, 2020 Sprenkle - CSCI209 20

FloorAnalyzer

20

10/30/20

11

Understanding the Code: Evaluation
• Process

Øpicasso.parser.language.
ExpressionTreeNode

• Output:
ØRGBColor

• Displayed in PixMap on Canvas

Oct 26, 2020 Sprenkle - CSCI209 21

Floor

21

Understanding the Code: Evaluation
• Key Parent class:
picasso.parser.language.ExpressionTreeNode

public abstract RGBColor evaluate(double x, double y);

• “Old” version of expressions:
ØReferenceForExpressionEvaluations

Oct 26, 2020 Sprenkle - CSCI209 22

22

10/30/20

12

Using Reflection in Java
• Can create objects of a class through the name

of the class
• Example adapted from MutantMaker:

Oct 28, 2020 Sprenkle - CSCI209 23

public static void initMutantMaker() {
mutants = new Mutant[numMutants];
mutants[0] = new Wolverine();
for (int i = 1; i < numMutants; i++) {

Class<?> mutantClass;
try {

mutantClass = Class.forName("mutants.Mutant"+ i);
mutants[i] = (Mutant)

mutantClass.getDeclaredConstructor().newInstance();
} catch (Exception e) {

e.printStackTrace();
}

}
}

23

Using Reflection in Java
• Can create objects of a class through the name of

the class
• Used in SemanticAnalyzer

Ø Gets list of functions
• Read from conf/functions.conf

Ø Maps a token to the class responsible for parsing that
type of token

Ø When SemanticAnalyzer sees that token, calls the
respective analyzer to parse

Ø Example: FloorToken maps to the FloorAnalyzer
• FloorAnalyzer pops the Floor token off the stack and then

parses the (one) parameter for the floor function

Oct 28, 2020 Sprenkle - CSCI209 24

24

10/30/20

13

Understanding Code:
A Top-Down Approach
• Run program

• Start at Main.java
Ø Follow calls to see how GUI is created

• Breadth or depth-first search
ØWhat classes make up the GUI?

• GUIs often follow the MVC design pattern
Ø Identify the model, view-controller in Picasso

Oct 26, 2020 Sprenkle - CSCI209 25

25

Picasso GUI

Oct 28, 2020 Sprenkle - CSCI209 26

ButtonPanel

F r a m
e

Canvas
(displays Pixmap)

JButton

Picasso’s GUI uses classes from two main Java packages:
• Abstract Windowing Toolkit: java.awt
• Swing: javax.swing

26

10/30/20

14

Understanding GUI Code
• In ButtonPanel.java, buttons are associated with

a command or action

Oct 28, 2020 Sprenkle - CSCI209 27

private Canvas myView;
…
public void add(String buttonText,

final Command<Pixmap> action) {
JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

}
});
add(button);

}

27

Understanding GUI Code
• In ButtonPanel.java, buttons are associated with

a command or action

Oct 28, 2020 Sprenkle - CSCI209 28

private Canvas myView;
…
public void add(String buttonText,

final Command<Pixmap> action) {
JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

}
});
add(button);

}

JButton’s ActionListener says
what to do if button is pressed

28

10/30/20

15

Understanding GUI Code
• In ButtonPanel.java, buttons are associated with

a command or action

Oct 28, 2020 Sprenkle - CSCI209 29

private Canvas myView;
…
public void add(String buttonText,

final Command<Pixmap> action) {
JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

}
});
add(button);

}

29

Understanding GUI Code
• In ButtonPanel.java, buttons are associated with

a command or action

Oct 28, 2020 Sprenkle - CSCI209 30

private Canvas myView;
…
public void add(String buttonText,

final Command<Pixmap> action) {
JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

}
});
add(button);

}

Defines an anonymous inner class and
creates an object of that type.
Benefits: can access private data in class

30

10/30/20

16

Anonymous Inner Classes
• Common way to write (certain) code
• No classname

ØClass is anonymous
• Extends a parent class or implements an

interface

Oct 28, 2020 Sprenkle - CSCI209 31

new ActionListener() {
public void actionPerformed(ActionEvent e) {

action.execute(myView.getPixmap());
myView.refresh();

}
}

the parent class/interface

Method implementations

31

Understanding Picasso Code
• Start in Evaluator command’s execute

method

Oct 28, 2020 Sprenkle - CSCI209 32

32

10/30/20

17

TODO
• Project Analysis due Friday

Oct 28, 2020 Sprenkle - CSCI209 33

33

