
11/4/20

1

Objectives
• Decorator design pattern
• Eclipse debugger

Nov 4, 2020 Sprenkle - CSCI209 1

1

Review
• What is a prototype?

ØWhat are some ways we can categorize prototypes?
ØWhat categories does the preliminary

implementation fall into?
• What is the singleton design pattern?

ØWhen is it useful?
ØHow is it implemented?

Nov 4, 2020 Sprenkle - CSCI209 2

2

11/4/20

2

Preliminary Implementation
• Goals

ØGet your team working together
Ø Find kinks in design

• Rework now instead of later

• Tag your version
• Can keep working after that

ØReturn to the tagged version for Monday’s demo

Nov 4, 2020 Sprenkle - CSCI209 3

3

Ungraded Objectives
• Think about what you need to complete for the

final implementation.
• With your current design, how well does your

design extend for the next steps, including the
extensions? What could be designed better?

• An hour of thinking about the design and
changing the code to improve the design will be
worth hours of time later.

Nov 4, 2020 Sprenkle - CSCI209 4

4

11/4/20

3

Review: Prototypes Overview
• Demonstrate one part/purpose

Ø Focus on one thing, not everything else

• Purpose/Dimensions
Ø Functionality
Ø Interaction
Ø Implementation

Nov 4, 2020 Sprenkle - CSCI209 5

5

From Nielsen,
Usability Engineering

Review: Prototypes: Fidelity
• Fidelity: how similar to finished product
• Low: omits details
• High: closer to finished project
• Multi-dimensional

ØBreadth: % of features covered
• Low-breadth: Only enough features for certain tasks

ØDepth: degree of functionality
• Low-depth: Limited choices, canned responses, no

error handling

Nov 4, 2020 Sprenkle - CSCI209 6

6

11/4/20

4

Review: Singleton Design Pattern
• Goal: Only one object of a class
• How to achieve

ØMake the constructor private
ØMake a public method for accessing the one and only

instance

Nov 4, 2020 Sprenkle - CSCI209 7

7

x/y is not the same as y/x

Nov 4, 2020 Sprenkle - CSCI209 8

Consider points, holding y steady at -.5
x/y y/x

Y X .3 .45 .55 .7

Y=-.5 -.6 -.9 -1.1 -1.4

Color: Mid-
gray

Dark
gray

Black Black

Y X .3 .45 .55 .7

Y=-.5 -1.67 -1.11 -.91 -.71

Color: Black Black Dark
gray

Mid
dark
gray

(placement of points is not exact
in illustration)

8

11/4/20

5

Picasso GUI Size Change
• Make the image size a square

ØMake width and height the same size
Ø Example:

• Size doesn’t matter – code should work
regardless of the size

Nov 4, 2020 Sprenkle - CSCI209 9

public class Main {
public static final Dimension SIZE =

new Dimension(600, 600);

9

DECORATOR DESIGN PATTERN

Nov 4, 2020 Sprenkle - CSCI209 10

10

11/4/20

6

What’s Your Drink?
• You go into a coffee shop: what is your drink?

• How can we represent the various beverages?
• What are the possible implementation issues?

Nov 4, 2020 Sprenkle - CSCI209 11

11

What’s Your Coffee Drink?

Nov 4, 2020 Sprenkle - CSCI209 12

Beverage
description
milk
soy
flavoring
whippedcream
getDescription()
cost()
hasMilk()
setMilk()
…

How many additional methods
will we need to add to create a
comprehensive beverage object?

How will we compute cost?

What happens when a new
beverage feature is added?

12

11/4/20

7

One Solution: Decorator

Nov 4, 2020 Sprenkle - CSCI209 13

Beverage
getDescription()
cost()

HouseBlend

cost()

Espresso

cost()

CondimentDecorator
getDescription()
cost()

Mocha

getDescription()
cost()

Soy

getDescription()
cost()

UML Diagram

13

Mocha’s Implementation

Nov 4, 2020 Sprenkle - CSCI209 14

public class Mocha extends CondimentDecorator {

private Beverage beverage;

public Mocha(Beverage beverage) {
this.beverage = beverage;

}

public String getDescription() {
return beverage.getDescription() + ", Mocha";

}

public double cost() {
return .20 + beverage.cost();

}
} What design patterns are used within this class?

How would we use this class?
How would we create other beverages?

14

11/4/20

8

Mocha’s Implementation

Nov 4, 2020 Sprenkle - CSCI209 15

public class Mocha extends CondimentDecorator {

private Beverage beverage;

public Mocha(Beverage beverage) {
this.beverage = beverage;

}

public String getDescription() {
return beverage.getDescription() + ", Mocha";

}

public double cost() {
return .20 + beverage.cost();

}
} Generalize: when to use the Decorator pattern,

tradeoffs of this design pattern

Handles part it knows about,
Delegates rest to Beverage;

Example of OCP

15

Using Beverages

Nov 4, 2020 Sprenkle - CSCI209 16

public class CoffeeGeneral {

public static void main(String[] args) {
Beverage b = new DarkRoast();
System.out.println(b.getDescription() +

" $" + b.getCost());

Beverage b2 = new DarkRoast();
b2 = new Mocha(b2);
b2 = new Mocha(b2);
b2 = new Whip(b2);
System.out.println(b2.getDescription() +

" $" + b2.getCost());
}

}

16

11/4/20

9

Design Pattern: Decorator
• Adds behavior to an object dynamically

Ø Typically added by doing computation before or after
an existing method in the object

• Benefits:
ØAlternative to inheritance
ØCan add any number of decorators

• Possible drawback:
ØCould add many small classes à less than

straightforward for others to understand

Nov 4, 2020 Sprenkle - CSCI209 17

Have we seen decorators used in practice?

17

Design Pattern: Decorator
• Adds behavior to an object dynamically

Ø Typically added by doing computation before or after
an existing method in the object

• Benefits:
ØAlternative to inheritance
ØCan add any number of decorators

• Possible drawback:
ØCould add many small classes à less than

straightforward for others to understand

Nov 4, 2020 Sprenkle - CSCI209 18

Have we seen decorators used in practice?

18

11/4/20

10

Represent Thanksgiving?

Nov 4, 2020 Sprenkle - CSCI209 21

dinner = new Turkey(new Duck(new Chicken()));

21

