
11/4/20

1

Objectives
• Decorator design pattern
• Eclipse debugger
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Review
• What is a prototype?

ØWhat are some ways we can categorize prototypes?
ØWhat categories does the preliminary 

implementation fall into?
• What is the singleton design pattern?

ØWhen is it useful?
ØHow is it implemented?
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Preliminary Implementation
• Goals

ØGet your team working together
Ø Find kinks in design

• Rework now instead of later

• Tag your version
• Can keep working after that

ØReturn to the tagged version for Monday’s demo
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Ungraded Objectives
• Think about what you need to complete for the 

final implementation.  
• With your current design, how well does your 

design extend for the next steps, including the 
extensions?  What could be designed better?

• An hour of thinking about the design and 
changing the code to improve the design will be 
worth hours of time later.
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Review: Prototypes Overview
• Demonstrate one part/purpose

Ø Focus on one thing, not everything else

• Purpose/Dimensions
Ø Functionality
Ø Interaction
Ø Implementation
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From Nielsen, 
Usability Engineering

Review: Prototypes: Fidelity
• Fidelity: how similar to finished product
• Low: omits details
• High: closer to finished project
• Multi-dimensional

ØBreadth: % of features covered
• Low-breadth: Only enough features for certain tasks

ØDepth: degree of functionality
• Low-depth: Limited choices, canned responses, no 

error handling
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Review: Singleton Design Pattern
• Goal: Only one object of a class
• How to achieve

ØMake the constructor private
ØMake a public method for accessing the one and only 

instance

Nov 4, 2020 Sprenkle - CSCI209 7

7

x/y is not the same as y/x
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Consider points, holding y steady at -.5
x/y y/x

Y X .3 .45 .55 .7

Y=-.5 -.6 -.9 -1.1 -1.4

Color: Mid-
gray

Dark 
gray

Black Black

Y X .3 .45 .55 .7

Y=-.5 -1.67 -1.11 -.91 -.71

Color: Black Black Dark 
gray

Mid 
dark 
gray

(placement of points is not exact
in illustration)
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Picasso GUI Size Change
• Make the image size a square

ØMake width and height the same size
Ø Example:

• Size doesn’t matter – code should work 
regardless of the size
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public class Main {
public static final Dimension SIZE = 

new Dimension(600, 600);
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DECORATOR DESIGN PATTERN
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What’s Your Drink?
• You go into a coffee shop: what is your drink?

• How can we represent the various beverages?
• What are the possible implementation issues?
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What’s Your Coffee Drink?
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Beverage
description
milk
soy
flavoring
whippedcream
getDescription()
cost()
hasMilk()
setMilk()
…

How many additional methods 
will we need to add to create a 
comprehensive beverage object?

How will we compute cost?

What happens when a new 
beverage feature is added?
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One Solution: Decorator
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Beverage
getDescription()
cost()

HouseBlend

cost()

Espresso

cost()

CondimentDecorator
getDescription()
cost()

Mocha

getDescription()
cost()

Soy

getDescription()
cost()

UML Diagram
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Mocha’s Implementation

Nov 4, 2020 Sprenkle - CSCI209 14

public class Mocha extends CondimentDecorator {

private Beverage beverage;

public Mocha(Beverage beverage) {
this.beverage = beverage;

}

public String getDescription() {
return beverage.getDescription() + ", Mocha";

}

public double cost() {
return .20 + beverage.cost();

}
} What design patterns are used within this class?

How would we use this class?
How would we create other beverages?
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Mocha’s Implementation
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public class Mocha extends CondimentDecorator {

private Beverage beverage;

public Mocha(Beverage beverage) {
this.beverage = beverage;

}

public String getDescription() {
return beverage.getDescription() + ", Mocha";

}

public double cost() {
return .20 + beverage.cost();

}
} Generalize: when to use the Decorator pattern,

tradeoffs of this design pattern

Handles part it knows about,
Delegates rest to Beverage;

Example of OCP
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Using Beverages
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public class CoffeeGeneral {

public static void main(String[] args) {
Beverage b = new DarkRoast();
System.out.println(b.getDescription() +

" $" + b.getCost());

Beverage b2 = new DarkRoast();
b2 = new Mocha(b2);
b2 = new Mocha(b2);
b2 = new Whip(b2);
System.out.println(b2.getDescription() +

" $" + b2.getCost());
}

}
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Design Pattern: Decorator
• Adds behavior to an object dynamically

Ø Typically added by doing computation before or after 
an existing method in the object

• Benefits:
ØAlternative to inheritance
ØCan add any number of decorators

• Possible drawback:
ØCould add many small classes à less than 

straightforward for others to understand

Nov 4, 2020 Sprenkle - CSCI209 17

Have we seen decorators used in practice?
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Represent Thanksgiving?
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dinner = new Turkey( new Duck( new Chicken() ) );
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