
Objectives
• Testing Overview
• Unit Testing
• JUnit

Sprenkle - CSCI209 1

Software Testing Process

Sprenkle - CSCI209 2

Input Program Output

Program
Under Test

Software Testing Process

• Test Suite: set of test cases

Sprenkle - CSCI209 3

Input Program Actual
Output

Test Case

Program
Under Test

Expected
Output ?

pass or fail

Software Testing Process

• Tester plays devil’s advocate
ØHopes to reveal problems in the program using

“good” test cases
ØBetter tester finds than a customer!

Sprenkle - CSCI209 4

Input Program Output

How is testing different from debugging?

How Would You Test a Calculator
Program?

• What test cases: input and expected output?

Sprenkle - CSCI209 5

Numerical
Answer

adds, subtracts,
multiplies, divides

Operands,
operators,
expected

output

Input Calculator
Program Output

Software Testing Issues
• How should you test? How often?

ØCode may change frequently
ØCode may depend on others’ code
ØA lot of code to validate

• How do you know that an output is correct?
ØComplex output
ØHuman judgment?

• What caused a code failure?

Sprenkle - CSCI209 6

➥ Need a systematic, automated,
repeatable approach

Levels of Testing
• Unit

Ø Tests minimal software component, in isolation
Ø For us, Class-level testing
Ø Web: Web pages (Http Request)

• Integration
Ø Tests interfaces & interaction of classes

• System
Ø Tests that completely integrated system meets

requirements
• System Integration

Ø Test system works with other systems, e.g., third-
party systems

Sprenkle - CSCI209 7

Cost increases

UNIT TESTING

Sprenkle - CSCI209 8

Why Unit Test?
• Verify code works as intended in isolation
• Find defects early in development

Ø Easier to test small pieces
Ø Less cost than at later stages

Sprenkle - CSCI209 9

Why Unit Test?
• Verify code works as intended in isolation
• Find defects early in development

Ø Easier to test small pieces
Ø Less cost than at later stages

• As application evolves, new code is more likely to
break existing code
Ø Suite of (small) test cases to run after code changes
ØAlso called regression testing

Sprenkle - CSCI209 10

Some Approaches to Testing Methods
• Typical case

Ø Test typical values of input/parameters
• Boundary conditions

Ø Test at boundaries of input/parameters
Ø Many faults live “in corners”

• Parameter validation
Ø Verify that parameter and object bounds are

documented and checked
Ø Example: pre-condition that parameter isn’t null

Sprenkle - CSCI209 11

➥All black-box testing approaches

Another Use of Unit Testing:
Test-Driven Development (TDD)

• A development style, evolved from Extreme
Programming

• Idea: write tests first without code bias
• The Process:

1. Write tests that code/new functionality should pass
• Like a specification for the code (pre/post conditions)
• All tests will initially fail

2. Write the code and verify that it passes test cases
• Know you’re done coding when you pass all tests

Sprenkle - CSCI209 12

What assumption does this make?

How do you know you’re “done” in
traditional development?

Characteristics of Good Unit Testing

• Automatic
• Thorough
• Repeatable
• Independent

Sprenkle - CSCI209 13

STOP: Why are these characteristics of
good (unit) testing?

Characteristics of Good Unit Testing
• Automatic

Ø Since unit testing is done frequently, don’t want humans
slowing the process down

Ø Automate executing test cases and evaluating results
Ø Input: in test itself or from a file

• Thorough
Ø Covers all code/functionality/cases

• Repeatable
Ø Reproduce results (correct, failures)

• Independent
Ø Test cases are independent from each other
Ø Easier to trace fault to code

Sprenkle - CSCI209 14

JUNIT

Sprenkle - CSCI209 15

JUnit Framework
• A framework for unit testing Java programs

Ø Supported by Eclipse and other IDEs
Ø Developed by Erich Gamma and Kent Beck

• Functionality
Ø Write tests

• Validate output, automatically
Ø Automate execution of test suites
Ø Display pass/fail results of test execution

• Stack trace where fails
Ø Organize tests, separate from code

• But, you still need to come up with the tests!

Sprenkle - CSCI209 16

Kent Beck

Erich Gamma

Testing with JUnit
• Typical organization:

Ø Set of testing classes
Ø Testing classes packaged together in a tests

package
• Separate package from code testing

• A test class typically
Ø Focuses on a specific class
ØContains methods, each of which represents another

test of the class

Sprenkle - CSCI209 17

tests
CDTest
DVDTest
MediaItemTest

Structure of a JUnit Test
1. Set up the test case (optional)

Ø Example: Creating objects

2. Exercise the code under test
3. Verify the correctness of the results
4. Teardown (optional)

Ø Example: reclaim created objects

Sprenkle - CSCI209 18

Annotations
• Testing in JUnit 5: uses annotations
• Provide information about a program that is not

part of program itself
• Have no direct effect on operation of the code

Ø But compiler or tools may use them
• Example uses of annotations:

Ø @Override: method declaration is intended to override a
method declaration in parent class
• If method does not override parent class method,

compiler generates error message
Ø Information for the compiler to suppress warnings

(@SupressWarnings)
Sprenkle - CSCI209 19

Creating Tests
• Tests are contained in classes
• The class is named for the functionality you’re

testing
• Typically located in a separate package named
tests

Sprenkle - CSCI209 20

package edu.wlu.cs.calculator.tests;

public class CalculatorTest {

}
This class contains tests for the calculator

Tests are Methods
• Mark your testing method with @Test

Ø From org.junit.jupiter.api.Test

• Convention: Method name describes what
you’re testing

Sprenkle - CSCI209 21

public class CalculatorTest {

@Test
public void addTest() {

…
}

}

A method to test the
“add” functionality

Class for testing the
Calculator class

Assert Methods
• Variety of assert methods available
• If fail, throw an error
• Otherwise, test keeps executing
• All static void
• Example:
assertEquals(Object expected, Object actual)

Sprenkle - CSCI209 22

@Test
public void addTest() {

…
assertEquals(4, calculator.add(3, 1));

}

Defined in
org.junit.jupiter.api.Assertions

Assert Methods
• To use asserts, need static import:

Østatic allows us to not have to use classname

• More examples
Ø assertTrue(boolean condition)
Ø assertSame(Object expected, Object actual)

• Refer to same object

Ø assertEquals(double expected, double
actual, double delta)
• Doubles are equal within a delta

Sprenkle - CSCI209 23

import static org.junit.Assert.*;

Example Uses of Assert Methods

Sprenkle - CSCI209 24

@Test
public void testEmptyCollection() {

Collection collection = new ArrayList();
assertTrue(collection.isEmpty());

}

@Test
public void testPI() {

final double ERROR_TOLERANCE = .01;
assertEquals(Math.PI, 3.14, ERROR_TOLERANCE);

}

Will fail if ERROR_TOLERANCE = .001

assertEquals(double expected, double actual, double delta)

Set Up/Tear Down
• May want methods to set up objects for every

test in the class
ØCalled fixtures
Ø If have multiple, no guarantees for order executed

Sprenkle - CSCI209 25

@BeforeEach
public void prepareTestData() { ... }

@BeforeEach
public void setupMocks() { ... }

@AfterEach
public void cleanupTestData() { ... }

Executed before
each test method

Example Set Up Method

Sprenkle - CSCI209 26

@BeforeEach Executed before each test method
• Can use testCD in test methods
• Helps make test methods independent
• Changes to instance variable in one test method

don’t affect the other test methods

private CD testCD;

@BeforeEach
public void setUp() {

testCD = new CD("CD title", "CD Artist",
100, 1997, 11);

}

Declare the instance variable

Example Testing the CD class

Sprenkle - CSCI209 27

private CD testCD;

@BeforeEach
public void setUp() {

testCD = new CD("CD title", "CD Artist",
100, 1997, 11);

}

@Test
public void testDefaultConstructor() {

// can use testCD in here
assertEquals(11, testCD.getNumTracks());
assertEquals(1997, testCD.getCopyrightYear());
assertTrue(testCD.isInCollection());
…

}

Instantiate the instance variable
before every test

Use the instance variable in your test methods

Declare the instance variable

Example Testing the CD class

Sprenkle - CSCI209 28

private CD testCD;

@BeforeEach
public void setUp() {

testCD = new CD("CD title", "CD Artist",
100, 1997, 11, false);

}

@Test
public void testInCollection() {

assertFalse(testCD.isInCollection());
testCD.setInCollection();
assertTrue(testCD.isInCollection());

}

Exercising the code and verifying its correctness

Expecting an Exception
• Sometimes an exception is the expected result

Sprenkle - CSCI209 29

@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class,
() -> { Object o = emptyList.get(0); }

);
}

Test case passes only if exception is thrown

Oct 5, 2020

Expecting an Exception: Breaking It Down

Sprenkle - CSCI209 30

@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class,
() -> { Object o = emptyList.get(0); }

);

}

assertThrows(Class<T> expectedType, Executable executable)

How to read assertThrows:
Execute the executable (after the first ,)
and check if it throws an exception of that type (before the ,)

Example of a
Lambda expression

Oct 5, 2020

https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html?is-external=true
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/function/Executable.html

Expecting an Exception: Breaking It Down (2)

Sprenkle - CSCI209 31

@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class,
() -> { Object o = emptyList.get(0); }

);

}

assertThrows(Class<T> expectedType, Executable executable)

How to read assertThrows:
Execute the highlighted code (in {})
and check if it throws that exception type

A lot more can be said about lambda expressions… but not now
Oct 5, 2020

https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html?is-external=true
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/function/Executable.html

Expecting an Exception
• Can also check characteristics of the thrown

exception

Sprenkle - CSCI209 32

@Test
public void testIndexOutOfBoundsException() {
List myList = new ArrayList();
IndexOutOfBoundsException ioobExc =

assertThrows(IndexOutOfBoundsException.class, () -> {
myList.get(0);

});
System.out.println(ioobExc.getMessage());
assertEquals("Index 0 out of bounds for length 0",

ioobExc.getMessage());
}

Test case passes only if exception is thrown
and message matches

Set Up/Tear Down For Test Class
• May want methods to set up objects for set of

tests
Ø Executed once before any test in class executes

Sprenkle - CSCI209 33

@BeforeAll
public static void
setupDatabaseConnection() { ... }

@AfterAll
public static void
teardownDatabaseConnection() { ... }

JUNIT IN ECLIPSE

Sprenkle - CSCI209 34

Using JUnit in Eclipse
• Eclipse can help make our job easier

ØAutomatically execute tests (i.e., methods)
ØWe can focus on coming up with tests

Sprenkle - CSCI209 35

Using JUnit in Eclipse
• In Eclipse, go to your Assignment7 project
• Create a new JUnit Test Case (under Java)

Ø Select JUnit Jupiter test
• When prompted, add JUnit to build path

ØPut in package edu.wlu.cs.username.
tests

ØName: DVDTest
ØChoose to test DVD class

• Select setUp and tearDown
• Select methods to test

• Run the class as a JUnit Test Case
Sprenkle - CSCI209 36

Example
• Test method that gets the length of the DVD

ØRevise: Add code to setUp method that creates a
DVD

• Notes
ØReplaying all the test cases: right click on package
Ø FastView vs Detached
ØHint: CTL-Spacebar to get auto-complete options

Sprenkle - CSCI209 37

Unit Testing & JUnit Summary
• Unit Testing: testing smallest component of your

code
Ø For us: class and its methods

• JUnit provides framework to write test cases and
run test cases automatically
Ø Easy to run again after code changes

Sprenkle - CSCI209 38

Got It? Good!
• Take the quiz on Canvas

Sprenkle - CSCI209 39

