
9/20/21

1

Objectives
•Last of Java fundamentals

ØArrays wrap up
ØIndefinite loops
ØFor-each loops
ØSwitch statements

•Static methods and fields

Sept 20, 2021 Sprenkle - CSCI209 1

1

Review
• What is the difference between

declaring, initializing, and
defining a variable?

• If you need to use another Java
class in your code (and it’s not
part of java.lang), what do you
need to do? What is the syntax
to do that?

• What is the syntax of a for
loop?

• What is the scope of a variable?
• What are the logical operators

(and, or, not) in Java?

• How do we access command-
line arguments from a Java
program execution?

• Arrays:
Ø How do we declare an array of

elements?
Ø How do we access elements of

an array?
Ø How can we find out the size of

an array?

Sept 20, 2021 Sprenkle - CSCI209 2

2

9/20/21

2

Terminology Review
•Declaration: int x;
•Definition: x = 3;
• Initializing: typically the first time the variable is

given a value
Øint x = 3;
ØOr could be first assignment, e.g., x = 3;

Sept 20, 2021 Sprenkle - CSCI209 3

3

Review: Array Length
•All array variables have a field called length

ØNote: no parentheses because not a method

Sept 20, 2021 Sprenkle - CSCI209 4

int[] array = new int[10];
for (int i = 0; i < array.length; i++) {

array[i] = i * 2;
}

for (int i = array.length-1; i >= 0; i--) {
System.out.println(array[i]);

}

ArrayLength.java
I’m declaring i twice in this code. Why is that not a compiler error?

4

9/20/21

3

Review: Variable Scope
•All array variables have a field called length

ØNote: no parentheses because not a method

Sept 20, 2021 Sprenkle - CSCI209 5

int[] array = new int[10];
for (int i = 0; i < array.length; i++) {

array[i] = i * 2;
}

for (int i = array.length-1; i >= 0; i--) {
System.out.println(array[i]);

}

ArrayLength.java

Scope of i is within each for loop; other loop doesn’t see it.
Declaring counter variable in for loop is common practice.

5

Example FileExtensionFinder

Sept 17, 2021 Sprenkle - CSCI209 6

/**
* This Java program (FileExtensionFinder) takes a file name (a
* String) as user input and displays the file extension, lowercased.
*
* @author Redacted McRedacted
*/

public class FileExtensionFinder {
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);
System.out.print("Enter your filename: ");
String filename = sc.nextLine();
sc.close();

int periodIndex = filename.lastIndexOf('.');
String extension = filename.substring(periodIndex + 1);
String lcExtension = extension.toLowerCase();

System.out.println("Your file is a(n) " + lcExtension + " file.");
}

} • Good variable names
• Good chunks – not doing too much in one line
• Good high-level comment

6

9/20/21

4

Arrays
•Assigning one array variable to another èboth

variables refer to the same array
ØSimilar to Python

•Draw picture of below code:

Sept 20, 2021 Sprenkle - CSCI209 7

int [] fibNums = {1, 1, 2, 3, 5, 8, 13};
int [] otherFibNums;

otherFibNums = fibNums;
otherFibNums[2] = 99;

System.out.println(otherFibNums[2]);
System.out.println(fibNums[2]);

7

Arrays
•Assigning one array variable to another èboth

variables refer to the same array
ØSimilar to Python

•Draw picture of below code:

Sept 20, 2021 Sprenkle - CSCI209 8

int [] fibNums = {1, 1, 2, 3, 5, 8, 13};
int [] otherFibNums;

otherFibNums = fibNums;
otherFibNums[2] = 99;

System.out.println(otherFibNums[2]);
System.out.println(fibNums[2]);

1 1 2 3 5 8 13

0 1 2 3 4 5 6

fibNums

otherFibNums

99

Displays:
99
99

8

9/20/21

5

java.util.Arrays
•Arrays is a class in java.util
•Static methods for sorting, searching,
deepEquals, fill arrays

•To use class, need import statement
ØGoes at top of program, before class definition

Sept 20, 2021 Sprenkle - CSCI209 9

import java.util.Arrays;

ArraysExample.java

9

Danger of a Large Library
•Be careful when searching for classes
•Lots of classes seem like they’re what we want

but aren’t, e.g.,

Sept 20, 2021 Sprenkle - CSCI209 10

java.lang.reflect.Array
javax.sql.rowset.serial.Array

An array (e.g., int[] array) is not an instance of a class
so we cannot call methods on it.

10

9/20/21

6

MORE CONTROL STRUCTURES

Sept 20, 2021 Sprenkle - CSCI209 11

11

Control Flow: foreach Loop
•Sun called “enhanced for” loop
• Iterate over all elements in an array (or

Collection)
ØSimilar to Python’s for loop

Sept 20, 2021 Sprenkle - CSCI209 12

int[] a;
int result = 0;
. . .
for (int i : a) {

result += i;
}

for each int element i in the array a ,
the loop body is executed

“in”

https://docs.oracle.com/javase/8/docs/
technotes/guides/language/foreach.html

12

https://docs.oracle.com/javase/8/docs/technotes/guides/language/foreach.html

9/20/21

7

Control Flow: while Loops
•while loop

ØCondition must be enclosed in parentheses
ØBody of loop must be enclosed in {} if multiple

statements

Sept 20, 2021 Sprenkle - CSCI209 13

int counter = 0;
while (counter < 5) {

System.out.println(counter);
counter++;

}
System.out.println("Done: " + counter);

shortcut

Counter.java
13

Changing control flow: break
•Exits the current loop

Sept 20, 2021 Sprenkle - CSCI209 14

while (<condition>) {
…
if(<something>) { // now we’re done!

break;
}

}

14

9/20/21

8

Control Flow: switch statement
•Like a big if/else if statement
•Works with variables with datatypes byte,
short, char, int, and String

Sept 20, 2021 Sprenkle - CSCI209 15

int x = 3;
switch(x) {

case 1:
System.out.println("It's a 1.");
break;

case 2:
System.out.println("It's a 2.");
break;

default:
System.out.println("Not a 1 or 2.");

}

15

Control Flow: switch statement

Sept 20, 2021 Sprenkle - CSCI209 16

switch(grade) {
case 'a':
case 'A':

System.out.println("Congrats!");
break;

case 'b':
case 'B':

System.out.println("Not too shabby!");
break;

… // Handle c, d, and f …
default:

System.out.println("Error: not a grade");
}

Grades.java

16

9/20/21

9

Summary: Python to Java Gotchas
• Every variable needs to be declared with its data

type before it is used
• Scope of variables
• Need to use equals method to do more than just a

“same object” check
• Syntax

ØSemicolons at the end of statements
ØBraces around blocks of code
ØKeywords

• Need to (1) compile and then (2) execute program
Sept 20, 2021 Sprenkle - CSCI209 17

17

Benefits of Static Typing
•Easier to keep track of type of variable

ØKnow operations that can be executed on a variable
of a certain type

•Compiler can check that you’re only using valid
operations for this type

•More benefits later this semester

Sept 20, 2021 Sprenkle - CSCI209 18

18

9/20/21

10

STATIC METHODS AND FIELDS

Sept 20, 2021 Sprenkle - CSCI209 19

19

static Methods/Fields
•For functionality/data that is specific to a class

ØAnd is not specific to a particular object

Sept 20, 2021 Sprenkle - CSCI209 20

20

9/20/21

11

static Methods/Fields Case Study:
java.lang.Math
•No constructor (what does that mean?)
•Static fields: PI, E

ØTo refer to field: ClassName.field
ØExample: Math.PI

•Static methods:
Østatic double sin(double a)
ØTo call method: ClassName.methodName(…)
ØExample: Math.sin(number);

Sept 20, 2021 Sprenkle - CSCI209 21

21

Static Methods
•Do not operate on objects

Øi.e., you do not call object.staticMethod();
ØCannot access instance fields of their class

•Can access static fields of their class
ØExample: Math class could have a static method that

uses PI

•Similar to Python functions that are associated
with the class

Sept 20, 2021 Sprenkle - CSCI209 22

ClassName.method(…)

22

9/20/21

12

Analyzing java.lang.String API
•Consider a “typical” (non-static) method:
String toUpperCase()
ØConverts all of the characters in this String to upper

case
ØExample use: 1) create a string

2) call myString.toUpperCase()

Sept 20, 2021 Sprenkle - CSCI209 23

23

Analyzing java.lang.String API
•String toUpperCase()

ØConverts all of the characters in this String to upper
case

ØExample: create a string, call
myString.toUpperCase()

•static String valueOf(boolean b)
ØReturns the string representation of the boolean

argument
ØExample use: String.valueOf(false);

Sept 20, 2021 Sprenkle - CSCI209 24Why can/should the second method be static?

24

9/20/21

13

Discussion

Sept 20, 2021 Sprenkle - CSCI209 25

Why is main static?

25

main()
•Most common static method
• main() does not get called on an object

ØRuns when a program starts
ØThere are no objects yet but there is the class

• main() executes and constructs the objects the
program needs and will use
ØLike the driver function for the program

Sept 20, 2021 Sprenkle - CSCI209 26

26

9/20/21

14

JavaDocs for Methods

• Use format similar to class comments
• Use @param tag(s) to describe what method takes as

parameter(s)
• Use @return tag to describe what method returns

Sept 20, 2021 Sprenkle - CSCI209 27

/**
* Returns the string representation of the boolean argument.
*
* @param b - a boolean
* @return if the argument is true, a string equal to "true" is
* returned; otherwise, a string equal to "false" is
* returned.
*/

public static boolean valueOf(boolean b) {

27

JavaDocs for Methods

Sept 20, 2021 Sprenkle - CSCI209 28

Generated on Web Page: https://docs.oracle.com/en/java/javase/16/docs/api/
java.base/java/lang/String.html#valueOf(boolean)

/**
* Returns the string representation of the boolean argument.
*
* @param b - a boolean
* @return if the argument is true, a string equal to "true" is
* returned; otherwise, a string equal to "false" is
* returned.
*/

public static boolean valueOf(boolean b) {

28

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/lang/String.html

9/20/21

15

JavaDocs for Methods

•Expectation in CSCI209
ØAll methods will have JavaDoc comments

Sept 20, 2021 Sprenkle - CSCI209 29

/**
* Returns the string representation of the boolean argument.
*
* @param b - a boolean
* @return if the argument is true, a string equal to "true" is
* returned; otherwise, a string equal to "false" is
* returned.
*/

public static boolean valueOf(boolean b) {

29

Static Summary
• Static fields and methods are part of a class and not

an object
ØDo not require an object of their class to be created to use

them
• When would we make a method static?

ØWhen a method does not have to access an object’s state
(fields) because all needed data are passed into the
method

ØWhen a method only needs to access static fields in the
class

Sept 20, 2021 Sprenkle - CSCI209 30

30

9/20/21

16

Practice Problem Overview
•Want to write a program that prompts the user

for two numbers and then displays the average
of those two numbers

•Breaking it down
1. Main class (the driver program) will handle user

input/display
2. Calculator class will implement method to find

average

Sept 20, 2021 Sprenkle - CSCI209 31

31

Static Method Practice
• Implement a static method called average

that
ØTakes as parameters 2 integers
ØReturns the average of those 2 numbers

•What should the signature of this method look
like?
ØUse the main method’s signature to guide you
ØDiscussion: what is the method’s return type?

•Discussion: Why should this be a static method?
Sept 20, 2021 Sprenkle - CSCI209 32Calculator.java

32

9/20/21

17

Test the Method
• In Calculator.java, main method will test the

method
ØCall the method and check that output is what you

expected
• If there is more than one method in the class,
main should either be the first or the last method
in the class
Øi.e., not somewhere in the middle

•How do we call the method?
Sept 20, 2021 Sprenkle - CSCI209 33

33

Putting it Together
•main will prompt user for two integers and

display the result of getting the average
Ømain is the driver

•Development process
1. Hardcode the numbers
2. Switch to user input

•How do we call the method?
ØNote that it is different because method is being

called from another class
Sept 20, 2021 Sprenkle - CSCI209 34Main.java

34

9/20/21

18

Looking Ahead
•Assignment 3 – due Tuesday at midnight
•Textbook: Read through Loops and Iteration

Sept 20, 2021 Sprenkle - CSCI209 35

35

