
9/26/21

1

Objectives
•Object Oriented Programming

ØConstructors
ØInitializing object state

•Overloading constructors, methods
• Inheritance

ØOverriding methods

•String formatting

Sep 24, 2021 Sprenkle - CSCI209 1

1

Assignment 3 Feedback:
Remember good programming practices
•No side effects to methods

ØIf method does not say that it is printing something, don’t print
something
• Printing while debugging is fine; remove print statements before final

submission
ØWant method to be reusable à print statements may not be

what others want
• Leverage existing APIs

Ø StringBuilder has reverse method; String has replace method
• Likely more efficient than anything you write

Sep 24, 2021 Sprenkle - CSCI209 2

2

9/26/21

2

Assignment 3 Discussion

Sep 24, 2021 Sprenkle - CSCI209 3

if (isPalindrome(potentialPalindrome) == true) {
System.out.println(potentialPalindrome + " is a palindrome.");

} else {
System.out.println(potentialPalindrome + " is not a palindrome");

}

Transition from this (when you were new to programming):

if (isPalindrome(potentialPalindrome)) {
System.out.println(potentialPalindrome + " is a palindrome.");

} else {
System.out.println(potentialPalindrome + " is not a palindrome");

}

To this (at least your 3rd programming course):

3

Assignment 3 Discussion

Sep 24, 2021 Sprenkle - CSCI209 4

if (string.equals(string2)) {
return true;

}
return false;

Rewrite the above code in one statement.

4

9/26/21

3

Assignment 3 Discussion

Sep 24, 2021 Sprenkle - CSCI209 5

if (string.equals(string2)) {
return true;

}
return false;

return string.equals(string2));

Much more concise and still understandable

5

Review
• What is black-box programming?

Ø What are the benefits of black-box
programming?

Ø How does Java help enforce black-
box programming?

• What is the structure of a Java
class?
Ø What does it contain?
Ø What are the syntax rules?
Ø What are our conventions for

ordering the class?

• What is our process for developing
a class?

• What is the Java equivalent of
None?

• What is the Java equivalent of
self?

• What does an object variable
contain?

Sep 24, 2021 Sprenkle - CSCI209 6

6

9/26/21

4

Review

Object
Object

Others can see and manipulate
object’s internals
• May have unintended consequences Java’s structure helps us enforce

black-box programming

What is the problem with white-box programming?

Sep 24, 2021 Sprenkle - CSCI209 7

7

Sep 24, 2021 Sprenkle - CSCI209 8

Review: Access Modifiers
• A public method (or instance field) means that any object

of any class can directly access the method (or field)
ØLeast restrictive

• A private method (or instance field) means that any
object of the same class can directly access this method (or
field)
ØMost restrictive

• Additional access modifiers will be discussed with inheritance

8

9/26/21

5

Review: Chicken.java

Sep 24, 2021 Sprenkle - CSCI209 9

public class Chicken {

// --------- INSTANCE VARIABLES ---------------
private String name;
private int height; // in cm
private double weight;

// --------- CONSTRUCTORS ---------------
public Chicken(String name, int h,

double weight) {
this.name = name;
this.height = h;
this.weight = weight;

}
…

this: Special name for the constructed object,
like self in Python (differentiate from parameters)

Type and name for
each parameterConstructor name same as class’s name

Params don’t need to be same names as
instance variable names

9

Review: Chicken.java

Sep 24, 2021 Sprenkle - CSCI209 10

…

// --------- Getter Methods ---------------
public String getName() {

return this.name;
}

// --------- Mutator Methods ---------------
public void feed() {

weight += .3;
height += 1;

}
…

}
Note that you don’t have to use this

when variables are unambiguous

Chicken object’s
instance variables

Type the method returns

10

9/26/21

6

Review: Class Development Process
1.Determine state

ØDeclare state at top of class

2.Define constructor
ØCreate an object (call constructor)

3. Repeat
ØWrite method or constructor
ØTest new method or constructor

Sep 24, 2021 Sprenkle - CSCI209 11

11

Review: Object References
•Variable of type Object: value is memory location

Sep 24, 2021 Sprenkle - CSCI209 12

one =

Chicken
weight =

height =

name =

2.0

38

"Fred"

Memory
Location

Chicken one = new Chicken("Fred", 38, 2.0);

12

9/26/21

7

Review: Object References
•Variable of type Object: value is memory location

Sep 24, 2021 Sprenkle - CSCI209 13

one =

two =

If I haven’t called the constructor, only
declared the variables, e.g.,

Chicken one;
Chicken two;

Both one and two are equal to null

This is the case for objects.
Primitive types are not null.

13

Sep 24, 2021 Sprenkle - CSCI209 14

Review: Multiple Object Variables
•More than one object variable can refer to the same

object

Chicken

weight =

height =

name =

3.0

45

"Sallie Mae"

sal =

other =

Chicken sal = new Chicken("Sallie Mae");
Chicken other = sal;

14

9/26/21

8

Chicken objects

weight =

height =

name =

2.0

38

"Fred"

weight =

height =

name =

4.5

50

"Merv"

A bunch of Chicken objects

weight =

height =

name =

3.0

44

"Sally"

Sep 24, 2021 Sprenkle - CSCI209 15

15

Chicken static Field Example

FARM = "McDonald"

weight =

height =

name =

2.0

38

"Fred"

weight =

height =

name =

4.5

50

"Merv"

A bunch of Chicken objects

static String FARM = "McDonald";

weight =

height =

name =

3.0

44

"Sally"

One variable shared by all members of the class.
Sep 24, 2021 Sprenkle - CSCI209 16

16

9/26/21

9

Summary: Class Design/Organization
•Fields

ØChosen first
ØPlaced at the beginning or

end of class definition
ØFor class or instance?
ØHave an access modifier,

data type, variable name,
and maybe optional
modifiers

•Constructors
ØHave an access modifier
ØSet all fields explicitly
ØUse this keyword to

access the object
•Methods

ØHave an access modifier
ØNeed to declare the return

type

Sep 24, 2021 Sprenkle - CSCI209 17

17

MORE ON OBJECT INITIALIZATION

Sep 24, 2021 Sprenkle - CSCI209 18

18

9/26/21

10

Default Object State Initialization
• If instance field is not explicitly set in constructor,

automatically set to default value
ØNumbers set to zero
ØBooleans set to false
ØObject variables set to null
ØLocal variables are not assigned defaults

•Do not rely on defaults
ØCode is harder to understand

Clean Code Recommendation:
Set all instance fields in the constructor(s)Sep 24, 2021 Sprenkle - CSCI209 19

19

Explicit Field Initialization
• If more than one constructor needs an instance field set

to same value, the field can be set explicitly in the field
declaration

class Chicken {
private String name = "";
. . .

}

Set value here for
all constructors

Sep 24, 2021 Sprenkle - CSCI209 20

20

9/26/21

11

Sep 24, 2021 Sprenkle - CSCI209 21

Explicit Field Initialization
•Or in a static method call

class Employee {
private static int nextID = 0;
private int id = assignID();
. . .
private static int assignID() {

int assignedID = nextID;
nextID++;
return assignedID;

}
}

21

Explicit Field Initialization
• Explicit field initialization happens before any constructor

runs
• A constructor can change an instance field that was set

explicitly
• If the constructor does not set the field explicitly, explicit

field initialization is used
class Chicken {

private String name = "";
public Chicken(String name, …) {

this.name = name;
…

}
…

Change explicit
field initialization

Sep 24, 2021 Sprenkle - CSCI209 22

22

9/26/21

12

final keyword
•An instance field can be final
•final instance fields must be set in the constructor or

in the field declaration
ØCannot be changed after object is constructed

private final String dbName = "invoices";
private final String id;
…
public MyObject(String id) {

this.id = id;
}

Sep 24, 2021 Sprenkle - CSCI209 23

23

More on Constructors
•A class can have more than one constructor

ØWhoa! Let that sink in for a bit

•A constructor can have zero, one, or multiple
parameters

•A constructor has no return value
•A constructor is always called with the new operator

Sep 24, 2021 Sprenkle - CSCI209 24

24

9/26/21

13

Overloading
• Allowing > 1 constructor (or any method) with the same

name is called overloading
ØConstraint: Each of the methods that have the same name or

constructor must have different parameters
• “different” à Number and/or type

• Compiler handles overload resolution
ØProcess of matching a method call to the correct method by

matching the parameters
• Can’t overload functions in Python

Sprenkle - CSCI209 25overload.py

Why isn’t overloading possible in Python?

Sep 24, 2021

25

Default Constructor
•Default constructor: constructor with no parameters
• If class has no constructors, compiler provides a default

constructor (automatically)
ØSets all instance fields to their default values

• If a class has at least one constructor and no default
constructor, default constructor is NOT provided

Sep 24, 2021 Sprenkle - CSCI209 26

26

9/26/21

14

Default Constructor
•Chicken class has one constructor:

Chicken(String name, int height, double weight)

➠No default constructor

Chicken chicken = new Chicken();

•Above code is a compiler error

Sep 24, 2021 Sprenkle - CSCI209 27

27

Constructors Calling Constructors
•Can call a constructor from another constructor
•To call another constructor of the same class,

the first statement of constructor must be
this(. . .);

Øthis refers to the object being constructed

Why would you want to call another constructor?

Sep 24, 2021 Sprenkle - CSCI209 28

28

9/26/21

15

Constructors Calling Constructors
•Why would a constructor call another constructor?

ØReduce code size, reduce duplicate code

•Ex: if Chicken’s name is not provided, use default name

•Another example:

Sep 24, 2021 Sprenkle - CSCI209

Chicken(int height, double weight) {
this("Bubba", height, weight);

}

Chicken(int height, double weight) {
this();
this.height = height;
this.weight = weight;

}

Not in example
code online

29

29

Summary: Overloading
•Overloading is when you define multiple constructors or

multiple methods with the same name
•Constraint: Each of the methods that have the same

name or the constructor must have different
parameters
Ø“different” à Number and/or type

•Compiler distinguishes between the
methods/constructor

Sep 24, 2021 Sprenkle - CSCI209 30

30

9/26/21

16

BASICS OF JAVA INHERITANCE

Sep 24, 2021 Sprenkle - CSCI209 31

31

Parent Class: Object
•Every class you create automatically inherits from the
Object class
ØSee Java API

• Examples of class hierarchies (from Java API):

Sep 24, 2021 Sprenkle - CSCI209 32

32

9/26/21

17

Overriding Methods
•You can override methods from parent classes
•Useful Object methods to override to customize your

class
ØString toString()
•Returns a string representation of the object
•Like Python’s __str__

Øboolean equals(Object o)
•Return true iff this object and o are equivalent
•Like Python’s __eq__

Note method signatures

Sep 24, 2021 Sprenkle - CSCI209 33

33

@Override
•Annotation
•Tells compiler “This method overrides a method in a

parent class. It should have the same signature as that
method in the parent class.”

• If your method signature does not match the overridden
method, then the compiler will give you a warning

•The point: use @Override so you don’t make silly—yet
costly—mistakes
Sep 24, 2021 Sprenkle - CSCI209 34

@Override
public boolean equals(Object obj) {

34

9/26/21

18

String toString()
• Automatically called when object is passed to print methods
• Default implementation: Class name followed by @ followed

by unsigned hexidecimal representation of hashcode
ØHashcode is typically the internal address of the object
ØExample: Chicken@163b91

• General contract:
Ø“A concise but informative representation that is easy for a person to

read”

• Your responsibility: Document the format
Sep 24, 2021 Sprenkle - CSCI209 35

35

Chicken’s toString
•What would be a good string representation of a

Chicken object?
ØLook at output before and after toString method

implemented

Sep 24, 2021 Sprenkle - CSCI209 36

36

9/26/21

19

boolean equals(Object o)
•Procedure (Source: Effective Java)

1. Use the == operator to check if the argument is a reference to
this object

2. Use the instanceof operator to check if the argument has
the correct type
• If a variable is a null reference, then instanceof will be false

3. Cast the argument to the correct type
4. For each “significant” field in the class, check if that field of

the argument matches the corresponding field of this object
• For doubles, use Double.compare and for floats use Float.compare

Sep 24, 2021 Sprenkle - CSCI209 37How should we determine that two Chickens are equivalent?

Note method signature

37

Checking an Object’s Type
• Use the instanceof operator to see if an object

implements an interface or is an object of the given type
Øe.g., to determine if an object is a String
if (obj instanceof String) {

// runs if obj is an object variable of type String
}
else {

// runs if obj is not an object variable of type String
}

Sep 24, 2021 Sprenkle - CSCI209 38

38

9/26/21

20

What Not to Do
• It is not recommended that you turn the objects into

Strings (using toString) and then comparing
•While the outcome may be correct, String operations are

expensive
•String representation may not represent all of the object
•Better to compare fields directly

Sep 24, 2021 Sprenkle - CSCI209 39

39

Summary: Inheritance So Far
•Every class inherits from Object class
•Can override methods of parent class(es)
•Useful Object methods to override:

ØString toString()
Øboolean equals(Object o)

Sep 24, 2021 Sprenkle - CSCI209 40

40

9/26/21

21

FORMATTING

Sep 24, 2021 Sprenkle - CSCI209 41

41

Formatting Strings: format
•String.format(<templatestring>,
<value1>, <value2>, …, <valuen>)

•Semantics: creates, returns a formatted string
ØMeans “format the templatestring, using the format(s)

specified by format specifiers on the corresponding
replacement values”

•Typically used with print statements

Sep 24, 2021 Sprenkle - CSCI209 42

Replacement values

42

9/26/21

22

Formatting Strings
•templatestring is a template for the resulting

string with format specifiers instead of the values
ØFor each format specifier in templatestring, should have a

replacement value

Sep 24, 2021 Sprenkle - CSCI209 43

One format specifier Corresponding replacement value

String.format("%.2f", 3.14159);
result is "3.14"

43

Example Format Specifiers

• What if precision is bigger than the decimal places?
Ø Fills decimal with 0s

• What if field width is smaller than the length of the value?
Ø String contains entire value

Sep 24, 2021 Sprenkle - CSCI209 44

Right-justified

Field width is 5

1 2 2 3 . 2 0

String.format("%5d", 12) String.format("%9.2f", 23.1999)

Field width is 9

Precision is 2

44

9/26/21

23

Format Specifiers
•General format:
%[flags][width][.precision]conversion
Øflags:

• 0: zero fills
• +: adds a + sign before positive values
• -: left-justification (default is right-justification)

Øwidth:
• Minimum number of character spaces reserved to display the entire

value
• Includes decimal point, digits before and after the decimal point and

the sign
Sep 24, 2021 Sprenkle - CSCI209 45

[] mean
“optional”

45

Format Specifiers
•General format:
%[flags][width][.precision]conversion
Øprecision:

• Number of digits after the decimal point for floating point values

Øcode:
• Indicates the value’s type/way to format

Sep 24, 2021 Sprenkle - CSCI209 46

Conversion Type
s string

d integer

f float (double)

46

9/26/21

24

Partial Examples using format

Sep 24, 2021 Sprenkle - CSCI209 47

String.format("Your item that cost ($%.2f)", value);
String.format("costs $%.2f with tax", tax);

Replacement values

Format specifier

Common use case:
Save each of these in two (String) variables and print them

47

Example: Printing Out Tables
•A table of temperature conversions

• If we want to print data in rows, what is the template for
what a row looks like?
ØHow do we make the column labels line up?

Sep 24, 2021 Sprenkle - CSCI209 48

Temp F Temp C Temp K
------ ------ ------
-459.7 -273.1 0.0

0.0 -17.8 255.4
32.0 0.0 273.1

TemperatureTable.java
48

9/26/21

25

Example: Printing Out Tables

Sep 24, 2021 Sprenkle - CSCI209 49

// example for one line of data in the table
double[] temps = {-459.7, -273.1, 0.0};

String tempFormat = "%10.1f %10.1f %10.1f";

System.out.println(String.format(tempFormat,
temps[0], temps[1], temps[2]));

Using String.format

49

Example: Printing Out Tables

Sep 24, 2021 Sprenkle - CSCI209 50

// example for one line of data in the table
double[] temps = {-459.7, -273.1, 0.0};

String tempFormat = "%10.1f %10.1f %10.1f\n";

System.out.printf(tempFormat,
temps[0], temps[1], temps[2]);

Using System.out.printf

50

9/26/21

26

Looking Ahead
•Assignment 4 – due Tuesday at 11:59 p.m.

ØWe have covered everything for the assignment
ØCreating an application, practicing

• Control structures
• Using classes from the Java API and your own class

ØGood capstone for the course so far
• Brings together a lot of concepts of the last ~2 weeks

•Textbook: Continuing “Defining Classes in Java”
ØUp to but not including “Abstract Classes and Methods”

Sep 24, 2021 Sprenkle - CSCI209 51

51

