
9/27/21

1

Objectives
•Formatting
•Enforcing encapsulation: Cloning
•Parameter passing
•Garbage collection

Sep 27, 2021 Sprenkle - CSCI209 1

1

Assignment Feedback
•Why articulation of errors matters

ØDemonstrates your understanding (or lack of understanding)
ØYou will need to discuss coding with teammates

•Why output files matter
ØI can see if when you ran on your machine, you get the same

output I get

Sep 27, 2021 Sprenkle - CSCI209 2

2

9/27/21

2

Assignment 4
• Lots of flexibility in design in Birthday and BirthdayParadox
• Lots of different correct designs

Ø Many more incorrect or too-complicated designs
• Consider

Ø If a variable should be a local variable, instance variable, or class variable
Ø API for the methods: What is its input? What is its output (what is

returned?)
• Test small parts!
• Use git well

Ø When are good points to checkpoint (commit) or make a new branch?

Sep 27, 2021 Sprenkle - CSCI209 3

3

Review
• What is overloading?

Ø Why would we want to overload a method?
• What is overriding?
• How do we make an instance variable unchangeable after

construction?
• How do we call a constructor within a constructor?
• What is the root of the Java class hierarchy?
• What method should we implement to allow pretty printing of

objects we define?
• What method should we implement for determining if two objects

are equivalent?

Sep 27, 2021 Sprenkle - CSCI209 4

4

9/27/21

3

FORMATTING

Sep 27, 2021 Sprenkle - CSCI209 5

5

Formatting Strings: format
•String.format(<templatestring>,
<value1>, <value2>, …, <valuen>)

•Semantics: creates, returns a formatted string
ØMeans “format the templatestring, using the format(s)

specified by format specifiers on the corresponding
replacement values”

•Typically used with print statements

Sep 27, 2021 Sprenkle - CSCI209 6

Replacement values

6

9/27/21

4

Formatting Strings
•templatestring is a template for the resulting

string with format specifiers instead of the values
ØFor each format specifier in templatestring, should have a

replacement value

Sep 27, 2021 Sprenkle - CSCI209 7

One format specifier Corresponding replacement value

String.format("%.2f", 3.14159);
result is "3.14"

7

Example Format Specifiers

• What if precision is bigger than the decimal places?
Ø Fills decimal with 0s

• What if field width is smaller than the length of the value?
Ø String contains entire value

Sep 27, 2021 Sprenkle - CSCI209 8

Right-justified

Field width is 5

1 2 2 3 . 2 0

String.format("%5d", 12) String.format("%9.2f", 23.1999)

Field width is 9

Precision is 2

8

9/27/21

5

Format Specifiers
•General format:
%[flags][width][.precision]conversion
Øflags:

• 0: zero fills
• +: adds a + sign before positive values
• -: left-justification (default is right-justification)

Øwidth:
•Minimum number of character spaces reserved to display the entire

value
• Includes decimal point, digits before and after the decimal point and

the sign
Sep 27, 2021 Sprenkle - CSCI209 9

[] mean
“optional”

9

Format Specifiers
•General format:
%[flags][width][.precision]conversion
Øprecision:

• Number of digits after the decimal point for floating point values

Øcode:
• Indicates the value’s type/way to format

Sep 27, 2021 Sprenkle - CSCI209 10

Conversion Type

s string

d integer

f float/double

10

9/27/21

6

Partial Examples using format

Sep 27, 2021 Sprenkle - CSCI209 11

String.format("Your item that cost ($%.2f)", value);
String.format("costs $%.2f with tax", tax);

Replacement values

Format specifier

Common use case:
Save each of these in two (String) variables and print them

11

Example: Printing Out Tables
•A table of temperature conversions

• If we want to print data in rows, what is the template for
what a row looks like?
ØHow do we make the column labels line up?

Sep 27, 2021 Sprenkle - CSCI209 12

Temp F Temp C Temp K
------ ------ ------
-459.7 -273.1 0.0

0.0 -17.8 255.4
32.0 0.0 273.1

TemperatureTable.java
12

9/27/21

7

Example: Printing Out Tables

Sep 27, 2021 Sprenkle - CSCI209 13

// example for one line of data in the table
double[] temps = {-459.7, -273.1, 0.0};

String tempFormat = "%10.1f %10.1f %10.1f";

System.out.println(String.format(tempFormat,
temps[0], temps[1], temps[2]));

Using String.format

13

Example: Printing Out Tables

Sep 27, 2021 Sprenkle - CSCI209 14

// example for one line of data in the table
double[] temps = {-459.7, -273.1, 0.0};

String tempFormat = "%10.1f %10.1f %10.1f\n";

System.out.printf(tempFormat,
temps[0], temps[1], temps[2]);

Using System.out.printf

14

9/27/21

8

ENFORCING ENCAPSULATION

Sep 27, 2021 Sprenkle - CSCI209 15

15

Encapsulation/Black-Box Programming Revisited

•Objects should hide their data and only allow other
objects to access this data through accessor and
mutator methods

•Common programmer mistake:
ØCreating an accessor method that returns a reference to a

mutable (changeable) object

Sep 27, 2021 Sprenkle - CSCI209 16

16

9/27/21

9

Sep 27, 2021 Sprenkle - CSCI209 17

What is “bad” about this class?

public class Farm {
. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return headRooster;

}
. . .

}

17

Sep 27, 2021 Sprenkle - CSCI209 18

What is “bad” about this class?
public class Farm {

. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return headRooster;

}
. . .

}
Problem: Giving others access to Farm’s headRooster
Others can then feed your rooster or change his name!!
(Silly example; understand consequences)

public class OtherCode {
. . .
Chicken stolen = farm.getHeadRooster();
. . .

}

18

9/27/21

10

Sep 27, 2021 Sprenkle - CSCI209 19

Fixing the Problem: Cloning
public class Farm {

. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return (Chicken) headRooster.clone();

}
. . .

}

• In previous example, could modify returned object’s state
•Another Chicken object, with the same data as headRooster,
is created and returned to the user
• If the user modifies (e.g., feeds) that object, headRooster is not affected

Method is available to all objects
(inherited from Object)

19

Sep 27, 2021 Sprenkle - CSCI209 20

Cloning
•Cloning is a more complicated topic than it seems from

the example
ØOut of scope for this class

20

9/27/21

11

Sep 27, 2021 Sprenkle - CSCI209 21

What is “bad” about this class?
public class Farm {

. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return headRooster;

}
. . .

}
Problem: Giving others access to Farm’s headRooster
Others can then feed your rooster or change his name!!
(Silly example; understand consequences)

But, then, why is it okay to return the name, height, or weight of a chicken?
Similar to Python, primitive types and Strings are immutable.
Since those attributes have immutable data types (String, int, double, respectively),
others can’t change those attributes when retrieved using a getter method.

21

PARAMETER PASSING

Sep 27, 2021 Sprenkle - CSCI209 22

22

9/27/21

12

Sep 27, 2021 Sprenkle - CSCI209 23

Method Parameters in Java
• Java always passes parameters into methods by value

ØMeaning: the formal parameter becomes a copy of the
argument/actual parameter’s value
Øcaller and callee have two independent variables with the same value

ØConsequence: Methods cannot change the variables used as
input parameters

ØA subtle point, so we will go through several examples

•Python is something that’s not quite pass-by-value—it
depends on if the object is mutable or immutable
ØPass-by-alias is one term used

23

Sep 27, 2021 Sprenkle - CSCI209 24

Method Parameters in Java
public static void main(String[] args) {

int x = 10;
int squared = square(x);
System.out.println("The square of " + x + " is " +

squared);
}

public static int square(int num) {
return num*=num;

}

Draw the stack as it changes
(similar to Python): main x 10

squared

24

9/27/21

13

Sep 27, 2021 Sprenkle - CSCI209 25

Method Parameters in Java
public static void main(String[] args) {

int x = 10;
int squared = square(x);
System.out.println("The square of " + x + " is " +

squared);
}

public static int square(int num) {
return num*=num;

}

square num 10

x 10
squared main

num copies the value of x

25

Sep 27, 2021 Sprenkle - CSCI209 26

Method Parameters in Java
public static void main(String[] args) {

int x = 10;
int squared = square(x);
System.out.println("The square of " + x + " is " +

squared);
}

public static int square(int num) {
return num*=num;

}

square num 100

x 10
squared main

26

9/27/21

14

Sep 27, 2021 Sprenkle - CSCI209 27

Method Parameters in Java
public static void main(String[] args) {

int x = 10;
int squared = square(x);
System.out.println("The square of " + x + " is " +

squared);
}

public static int square(int num) {
return num*=num;

}

main x 10
squared 100The square of 10 is 100

Output:

27

Sep 27, 2021 Sprenkle - CSCI209 28

What’s the Output?
public static void main(String[] args) {

int x = 27;
System.out.println(x);
doubleValue(x);
System.out.println(x);

}
public static void doubleValue(int p) {

p = p * 2;
}

1. Think (independently) for 1 minute
2. Share with your neighbor.
3. Discuss as class

28

9/27/21

15

Sep 27, 2021 Sprenkle - CSCI209 29

What’s the Output?

27
27

public static void main(String[] args) {
int x = 27;
System.out.println(x);
doubleValue(x);
System.out.println(x);

}
public static void doubleValue(int p) {

p = p * 2;
}

main x 27

double
Value p 27

Output (so far):
27

29

Sep 27, 2021 Sprenkle - CSCI209 30

What’s the Output?

27
27

public static void main(String[] args) {
int x = 27;
System.out.println(x);
doubleValue(x);
System.out.println(x);

}
public static void doubleValue(int p) {

p = p * 2;
}

main x 27

double
Value p 54

30

9/27/21

16

public static void main(String[] args) {
int x = 27;
System.out.println(x);
doubleValue(x);
System.out.println(x);

}
public static void doubleValue(int p) {

p = p * 2;
}

Sep 27, 2021 Sprenkle - CSCI209 31

What’s the Output?

27
27

main x 27

31

Pass by Value: Objects
•Primitive types are a little more obvious

ØCan’t change original variable

•For objects, passing a copy of the parameter looks like:

Sep 27, 2021 Sprenkle - CSCI209 32

public void methodName(Chicken c)

methodName(chicken);

chicken =

c =
height
=
name =

38

x00FFBB weight =

height =

name =

3.0

45

"Sallie Mae"x00FFBB

Pass Chicken object to methodName when calling method

32

9/27/21

17

Pass by Value: Objects
•What happens in this case?

Sep 27, 2021 Sprenkle - CSCI209 33

public void methodName(Chicken c) {
if(c.getWeight() < MIN) {

c.feed();
}
…

}

methodName(chicken);

chicken =

c =
height
=
name =

weight =

height =

name =

3.0

45

"Sallie Mae"

Can the Chicken object be
changed in the called method?

x00FFBB

x00FFBB

33

Pass by Value: Objects
•What happens in this case?

Sep 27, 2021 Sprenkle - CSCI209 34

public void methodName(Chicken c) {
if(c.getWeight() < MIN) {

c.feed();
}
…

}

chicken =

c =
height
=
name =

38

“Fred”

weight =

height =

name =

3.0

45

"Sallie Mae”

Can the Chicken object be
changed in the called method?

YES! Both chicken and c are
pointing to the same Chicken object

methodName(chicken);

x00FFBB

x00FFBB

34

9/27/21

18

Sep 27, 2021 Sprenkle - CSCI209 35

Example 1: What’s the Output?
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23.2);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {

c.setWeight(c.getWeight() + .5);
}

(setWeight was not a method defined in our Chicken class; just for this example)

35

Sep 27, 2021 Sprenkle - CSCI209 36

Example 1: What’s the Output?
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23.2);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {

c.setWeight(c.getWeight() + .5);
}

sal =

c =
height
=

38

“Fred”

x00FFBB
weight =

height =

name =

5

23.2

"Sallie Mae"x00FFBB

c copies the value of sal

36

9/27/21

19

Sep 27, 2021 Sprenkle - CSCI209 37

Example 1: What’s the Output?
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23.2);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {

c.setWeight(c.getWeight() + .5);
}

23.2
23.7

37

Sep 27, 2021 Sprenkle - CSCI209 38

Example 2: What’s the Output?
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23.2);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {

c = new Chicken(c.getName(), c.getWeight(), c.getHeight());
c.setWeight(c.getWeight() + .5);

}

38

9/27/21

20

Sep 27, 2021 Sprenkle - CSCI209 3939

Example 2: Tracing through Execution
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23.2);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .
// From Farm class
public void feedChicken(Chicken c) {

c = new Chicken(c.getName(), c.getWeight(), c.getHeight());
c.setWeight(c.getWeight() + .5);

}

sal =

c =
height
=
name =

38

“Fred”

weight =

height =

name =

5

23.2

"Sallie Mae"

x00FFBB

x00FFBB

c copies the value of sal

39

Sep 27, 2021 Sprenkle - CSCI209 4040

Example 2: Tracing through Execution
public void feedChicken(Chicken c) {

c = new Chicken(c.getName(), c.getWeight(), c.getHeight());
c.setWeight(c.getWeight() + .5);

}

sal =

c =

height
=
name =

38

“Fred”

weight =

height =

name =

5

23.2

"Sallie Mae"

x00FFBB

x0AFFBF

height
=
name =

38

“Fred”

weight =

height =

name =

5

23.2

"Sallie Mae"

A new Chicken object is created (at a new
memory address).
c is assigned to/references that object.

40

9/27/21

21

Sep 27, 2021 Sprenkle - CSCI209 4141

Example 2: Tracing through Execution
public void feedChicken(Chicken c) {

c = new Chicken(c.getName(), c.getWeight(), c.getHeight());
c.setWeight(c.getWeight() + .5);

}

sal =

c =

height
=
name =

38

“Fred”

weight =

height =

name =

5

23.2

"Sallie Mae"

x00FFBB

x0AFFBF

height
=
name =

38

“Fred”

weight =

height =

name =

5

23.2

"Sallie Mae"
The object that c references is updated;
the object that sal references is unaffected

41

Sep 27, 2021 Sprenkle - CSCI209 4242

Example 2: Tracing through Execution
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23.2);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .
// From Farm class
public void feedChicken(Chicken c) {

c = new Chicken(c.getName(), c.getWeight(),
c.getHeight());

c.setWeight(c.getWeight() + .5);
}

sal =
height
=
name =

38

“Fred”

weight =

height =

name =

5

23.2

"Sallie Mae"

x00FFBB

23.2
23.2

42

9/27/21

22

Sep 27, 2021 Sprenkle - CSCI209 43

Summary of Passing Parameters to Methods
•Everything is passed by value in Java

•An object variable (not an object) is passed into a
method
ØChanging the state of an object in a method changes the state

of object outside the method
ØCalled method does not get a copy of the original object

43

TRACING THROUGH CODE

Sep 27, 2021 Sprenkle - CSCI209 44

44

9/27/21

23

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Sep 27, 2021 Sprenkle - CSCI209 45

1. Think (independently) for 1 minute
2. Share with your neighbor.
3. Discuss as class

45

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Sep 27, 2021 Sprenkle - CSCI209 46

baby

ed

mo

z

x

y

temp

46

9/27/21

24

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Sep 27, 2021 Sprenkle - CSCI209 47

baby

ed

mo

z

x

y

temp

47

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Sep 27, 2021 Sprenkle - CSCI209 48

baby

ed

mo

z

x

y

temp

48

9/27/21

25

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Sep 27, 2021 Sprenkle - CSCI209 49

baby

ed

mo

z

x

y

temp

49

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Sep 27, 2021 Sprenkle - CSCI209 50

Whoops! Lost “baby” chicken! -- No object variable references it
Memory leak!

Luckily Java has garbage collectors to clean up the memory leak

baby

50

9/27/21

26

Looking Ahead
•Assignment 4 – due Tuesday at 11:59 p.m.

ØBuilding on the Birthday class
• Overloading constructor
• Overriding methods

ØCreating an application, practicing
• Control structures
• Using your own class and classes from the Java API

Sep 27, 2021 Sprenkle - CSCI209 51

51

