
10/15/21

1

Objectives
•Garbage Collection
•Inheritance

Sep 29, 2021 Sprenkle - CSCI209 1

1

Review
• How do you print formatted output in Java?

Ø What are the various components? How do they work?
• Some code needs to return a private variable from a public method

Ø Why could that be a problem?
Ø How should we implement that method?

• How does Java pass parameters?
Ø What are the consequences of that choice? (How does that affect how we

call methods?)
• Assignment 4: How do you ensure that there is only one variable/object

for a class? Example: only one random number generator for Birthday
class

Sep 29, 2021 Sprenkle - CSCI209 2

2

10/15/21

2

Sep 29, 2021 Sprenkle - CSCI209 3

Review: Providing Private Data
public class Farm {

. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return (Chicken) headRooster.clone();

}
. . .

}

• Another Chicken object, with the same data as headRooster,
is created and returned to the user

• If the user modifies (e.g., feeds) that object, headRooster is not affected

Method is available to all objects
(inherited from Object)

3

Sep 29, 2021 Sprenkle - CSCI209 4

Review: Method Parameters in Java
•Java always passes parameters into methods

by value
ØMeaning: the formal parameter becomes a copy of

the argument/actual parameter’s value
ØMethod caller and callee have two independent variables

with the same value
ØConsequence: Methods cannot change the variables

used as input parameters

4

10/15/21

3

Review: Pass by Value: Objects

Sep 29, 2021 Sprenkle - CSCI209 5

public void methodName(Chicken c) {
if(c.getWeight() < MIN) {

c.feed();
}
…

}

chicken =

c =
height
=
name =

38

“Fred”

weight =

height =

name =

3.0

45

"Sallie Mae"

x00FFBB

x00FFBB

Can the Chicken object be changed in
calling method?
YES! Both chicken and c are
pointing to the same Chicken object

methodName(chicken);

5

Sep 29, 2021 Sprenkle - CSCI209 6

Review: Summary of Method Parameters
•Everything is passed by value in Java
ØFormal parameter copies the actual parameter

•An object variable (not an object) is passed into a
method
ØChanging the state of an object in a method changes

the state of object outside the method
ØMethod does not see a copy of the original object

6

10/15/21

4

Review: Chicken static Field Example

FARM = "McDonald"

weight =

height =

name =

2.0

38

"Fred"

weight =

height =

name =

4.5

50

"Merv"

A bunch of Chicken objects

static String FARM = "McDonald";

weight =

height =

name =

3.0

44

"Sally"

One variable shared by all members of the class.
Sep 29, 2021 Sprenkle - CSCI209 7

7

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Sep 29, 2021 Sprenkle - CSCI209 8

Whoops! Lost “baby” chicken! -- No object variable references it
Memory leak!

Luckily Java has garbage collectors to clean up the memory leak

baby

8

10/15/21

5

GARBAGE COLLECTION

Sep 29, 2021 Sprenkle - CSCI209 9

9

Sep 29, 2021 Sprenkle - CSCI209 10

Memory Management
•Early languages (e.g., C): free memory when you’re

done with it
•In C++ and some other OOP languages, classes have

explicit destructor methods that run when an object
is no longer in scope

•Java provides automatic garbage collection
ØReclaims memory allocated for objects that are no longer

referenced

10

10/15/21

6

Sep 29, 2021 Sprenkle - CSCI209 11

Garbage Collector (GC)
•Garbage collector is low-priority thread or runs

when available memory gets tight
•Before GC can clean up an object, the object may

have opened resources
ØEx: generated temp files or open network connections

that should be deleted/closed first
•GC calls object’s finalize() method
ØObject’s chance to clean up resources

11

Sep 29, 2021 Sprenkle - CSCI209 12

finalize()
• Inherited from java.lang.Object
• Called before garbage collector sweeps away an object and reclaims its

memory
• Should not be used for reclaiming resources

Ø i.e., close resources as soon as possible
Ø Why?

• When method is called is not deterministic or consistent
• Only know it will run sometime before garbage collection

• Clean up anything that cannot be atomically cleaned up by the garbage
collector
Ø Close file handles, network connections, database connections, etc.

• Note: no finalizer chaining
Ø Must explicitly call parent object’s finalize method

12

10/15/21

7

Alternatives to finalize
•Recall: unknown when finalize will execute—or if

it will execute
ØAlso heavy performance cost

•Solution: create your own terminating method
ØUser of class terminates when done using object

•Examples: Scanner’s or Window’s close method
•May still want finalize() as a safety net if user

didn’t call the terminate method
ØLog a warning message so user knows error in code

Sep 29, 2021 Sprenkle - CSCI209 13Do you know what Python does?

13

Python Garbage Collection
• Python also does garbage collection
• Python does reference counting

ØOn each reference/dereference, update the number of references to
the object
• Can’t handle reference cycles

• Python also does generational garbage
collection to handle reference cycles

• Tradeoffs with Java’s Garbage Collection
ØSynchronous (not asynchronous) process (i.e., slows down execution)
ØCheaper memory costs than Java for keeping track of what can be

garbage collected

Sep 29, 2021 Sprenkle - CSCI209 14

1

1

1

var

01

Discussion: Benefits and limitations of garbage collection?

14

10/15/21

8

Garbage Collection
Benefits

• Programmer doesn’t need to
worry about memory
management

• Cleans up unreferenced memory
automatically, eventually

• Programmer can never release
memory that is then accessed
(a.k.a. seg faults)

Drawbacks

• Programmer doesn’t worry about
memory management
Ø May not be as careful to avoid memory

leaks

• Memory could be cleaned up
sooner

• Requires resources (CPU,
memory) to keep track of memory

• Slows program execution

Sep 29, 2021 Sprenkle - CSCI209 15

15

Garbage Collection

• Programmer doesn’t need to
worry about memory
management

• Cleans up unreferenced memory
automatically, eventually

• Programmer can never release
memory that is then accessed
(a.k.a. seg faults)

• Programmer doesn’t worry about
memory management
Ø May not be as careful to avoid memory

leaks

• Memory could be cleaned up
sooner

• Requires resources (CPU,
memory) to keep track of memory

• Slows program execution

Sep 29, 2021 Sprenkle - CSCI209 16

• Programmer time is more valuable than
computer resources.

• Less buggy code is preferred to more
efficient code in many domains

Benefits Drawbacks

16

10/15/21

9

INHERITANCE

Sep 29, 2021 Sprenkle - CSCI209 17

17

Review: Inheritance (from CSCI112)
•What are the benefits of inheritance?
•What are examples of inheritance?
•When should you use inheritance?

Sep 29, 2021 Sprenkle - CSCI209 18

18

10/15/21

10

Sep 29, 2021 Sprenkle - CSCI209 19

Inheritance
•Build new classes based on existing classes
ØAllows code reuse

•Start with a class (parent or super class)
•Create another class that extends or specializes

the class
ØCalled the child, subclass, or derived class
ØUse extends keyword to make a subclass

19

Sep 29, 2021 Sprenkle - CSCI209 20

Child class
•Inherits all of parent class’s methods and fields

ØNote on private fields: all are inherited, just can’t access
•Constructors are not inherited
•Can override methods

ØRecall: overriding - methods have the same name and
parameters, but implementation is different

•Can add methods or fields for additional
functionality

•Use super object to call parent’s method
ØEven if child class redefines parent class’s method

20

10/15/21

11

Sep 29, 2021 Sprenkle - CSCI209 21

Rooster class
•Could write class from scratch, but …
•A rooster is a chicken
ØBut it adds something to (or specializes) what a

chicken is/does

•Classic mark of inheritance: is a relationship
•Rooster is child class
•Chicken is parent class

21

Sep 29, 2021 Sprenkle - CSCI209 22

Access Modifiers
•public

ØAny class can access
•private

ØNo other class can access (including child classes)
• Must use parent class’s public accessor/mutator methods

•protected
ØChild classes can access
ØMembers of package can access
ØOther classes cannot access

22

10/15/21

12

Access Modes
Accessible to Member Visibility

public protected package private
Defining class Yes Yes Yes Yes

Class in same
package

Yes Yes Yes No

Subclass in
different package

Yes Yes No No

Non-subclass
different package

Yes No No No

Sep 29, 2021 Sprenkle - CSCI209 23

Default (if none specified)

• Visibility for variables: who can access/change
• Visibility for methods: who can call

23

protected
•Accessible to subclasses and members of package
•Can’t keep encapsulation “pure”
ØDon’t want others to access fields directly
ØMay break code if you change your implementation

•Assumption?
ØSomeone extending your class with protected access

knows what they are doing

Sep 29, 2021 Sprenkle - CSCI209 24

24

10/15/21

13

Sep 29, 2021 Sprenkle - CSCI209 25

Guidance on Access Modifiers
•If you’re uncertain which to use (protected,

package, or private), use the most restrictive
ØChanging to less restrictive later à easy
ØChanging to more restrictive à may break code that

uses your classes

25

Changes to Chicken Class
•Added a new instance variable called is_female
•Added getter and setter for is_female
•Updated toString, equals methods accordingly

•2 Chicken classes in examples
ØChicken.java private instance variables
ØChicken2.java protected instance variables

Sep 29, 2021 Sprenkle - CSCI209 26

26

10/15/21

14

Sep 29, 2021 Sprenkle - CSCI209 27

Rooster class
public class Rooster extends Chicken {

public Rooster(String name, int height, double weight) {

super(name, height, weight, false);
}

// new functionality
public void crow() { … }

…
}

Call to super constructor must be first statement in constructor

extends means that Rooster
is a child of Chicken

27

Sep 29, 2021 Sprenkle - CSCI209 28

Rooster class
public class Rooster extends Chicken {

public Rooster(String name, int height, double weight) {
// all instance fields inherited
// from super class
this.name = name;
this.height = height;
this.weight = weight;
this.is_female = false;

}

// new functionality
public void crow() {… }
…

By default, calls default
super constructor with no parameters

extends means that Rooster
is a child of Chicken

(not one of the
examples posted online)

28

10/15/21

15

Sep 29, 2021 Sprenkle - CSCI209 29

Constructor Chaining
•Constructor automatically calls constructor of

parent class if not done explicitly
Øsuper();

•What if parent class does not have a constructor
with no parameters?
ØCompilation error
ØForces child classes to call a constructor with

parameters

29

Sep 29, 2021 Sprenkle - CSCI209 30

Overriding and New Methods
public class Rooster extends Chicken {

…

// overrides superclass; greater gains
@Override
public void feed() {

weight += .5;
height += 2;

}

// new functionality
public void crow() {

System.out.println("Cocka-Doodle-Doo!");
}

}

Same method signature
as parent class

Specializes the class

30

10/15/21

16

Inheritance Tree: Constructor Chaining
•java.lang.Object
ØChicken
•Rooster

•Call parent class’s constructor first
ØKnow you have fields of parent class before

implementing constructor for your class

Sep 29, 2021 Sprenkle - CSCI209 31

Object

Chicken

Rooster

1

2

31

Sep 29, 2021 Sprenkle - CSCI209 32

Inheritance Tree
•java.lang.Object
ØChicken
•Rooster

•No finalize() chaining
ØShould explicitly call super.finalize()

inside of finalize method

Object

Chicken

Rooster

32

10/15/21

17

Sep 29, 2021 Sprenkle - CSCI209 33

Shadowing Parent Class Fields
•Child class has field with same name as parent class

ØYou probably shouldn’t be doing this
ØBut could happen

• Examples: more precision for a constant (or more weight gain for a
rooster)

field // this class's field
this.field // this class's field
super.field // super class's field

33

Sep 29, 2021 Sprenkle - CSCI209 34

Multiple Inheritance
•In Python, a class can inherit more than one

parent class
ØChild class has the fields from both parent classes

•This is NOT possible in Java.
ØA class may extend (or inherit from) only one class

34

10/15/21

18

Assignment 5
• Start of a simple video game

Ø Game class to run
Ø GamePiece is parent class of other moving objects

• Some less-than-ideal design
Ø Can’t fix until see other Java structures (Friday)

• Don’t need to understand all of the code (yet), just some of it
• Create a Goblin class and a Treasure class

Ø Move Goblin and Treasure

• Due Tuesday at midnight

Sep 29, 2021 Sprenkle - CSCI209 35

35

