
10/1/21

1

Objectives
•Polymorphism
•Dynamic Dispatch
•Abstract Classes
•Interfaces

Oct 1, 2021 Sprenkle - CSCI209 1

1

Oct 1, 2021 Sprenkle - CSCI209 2

Review
• How does Java handle memory management?

ØWhat are the benefits and limitations of that approach?
• How do we make a class inherit from a parent class?
• How does a class refer to its parent class?
• What does a class inherit from its parent class?

ØWhat is not inherited?
• What are the access modifiers, ordered from least

restrictive to most restrictive?
• How can we check that an object variable is a certain type?

Ø(not from last class; before that)

2

10/1/21

2

Inheriting Private Variables

Oct 1, 2021 Sprenkle - CSCI209 3

Parent

pr
iv

at
e

Child

Pa
re

nt

pr
iv

at
e

Parent

Parent has private variables,
which objects of Parent class can access

Child class inherits the private
variables from Parent but
cannot directly access them.

3

Review
•Designing classes: When should you make a

variable/field
ØLocal vs instance vs static?
ØPrivate vs protected vs public?

•Inheritance in game code
ØJavadocs

Oct 1, 2021 Sprenkle - CSCI209 4

4

10/1/21

3

POLYMORPHISM & DISPATCH

Oct 1, 2021 Sprenkle - CSCI209 5

5

Polymorphism
• Polymorphism is an object’s ability to vary behavior based on

its type
• You can use a child class object whenever the program expects

an object of the parent class
• Object variables are polymorphic
• A Chicken object variable can refer to an object of class
Chicken, Rooster, Hen, or any class that inherits from
Chicken

Oct 1, 2021 Sprenkle - CSCI209 6

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

We can guess the actual types
But compiler can’t

6

10/1/21

4

Oct 1, 2021 Sprenkle - CSCI209 7

Somewhere Else…
Rooster foghorn = new Rooster(…);
Hen momma = new Hen(…);
Chicken baby = new Chicken(…);

•These objects were instantiated at some point in
time …

7

Oct 1, 2021 Sprenkle - CSCI209 8

Compiler’s Behavior

•We know chickens[1] is probably a Rooster, but to
compiler, it’s a Chicken so

chickens[1].crow(); will not compile

Chicken[] chickens = new Chicken[3];
chickens[0] = momma; // a Hen
chickens[1] = foghorn; // a Rooster
chickens[2] = baby; // a Chicken

8

10/1/21

5

Compiler’s Behavior
• When we refer to a Rooster object through a Rooster

object variable, compiler sees it as a Rooster object
• If we refer to a Rooster object through a Chicken object

variable, compiler sees it as a Chicken object.

• We cannot assign a parent class object to a child class
object variable
ØEx: Rooster is a Chicken, but a Chicken is not necessarily a
Rooster

Oct 1, 2021 Sprenkle - CSCI209 9

Rooster r = chicken;

à Object variable determines how compiler sees object.

9

Oct 1, 2021 Sprenkle - CSCI209 10

Polymorphism
Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

chickens[1].feed();

Compiles because Chicken has a feed method.

But, which feed method is called –
Chicken’s or Rooster’s?

10

10/1/21

6

Oct 1, 2021 Sprenkle - CSCI209 11

Polymorphism
•Which method do we call when we call
chicken[1].feed()?
Rooster’s or Chicken’s?

•In Java: Rooster’s!
ØObject is a Rooster
ØJVM figures out object’s class at runtime and runs the

appropriate method
•Dynamic dispatch

ØAt runtime, the object’s class is determined
ØAppropriate method for that class is dispatched

11

Feed the Chickens!

•Dynamic dispatch calls the method corresponding to
the actual class of each object
ØThis is the power of polymorphism and dynamic dispatch!

Oct 1, 2021 Sprenkle - CSCI209 12

for(Chicken c: chickens) {
c.feed();

}
How to read this code?
What happens in execution?

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

Recall:

Think on your own for 1 minute

12

10/1/21

7

Oct 1, 2021 Sprenkle - CSCI209 13

Dynamic Dispatch vs. Static Dispatch
• Dynamic dispatch is not necessarily a property of statically typed

object-oriented programming languages in general
• Some OOP languages use static dispatch

Ø Type of the object variable that the method is called on determines which
version of method gets run

• The primary difference is when decision on which method to call
is made…
Ø Static dispatch (C#) decides at compile time
ØDynamic dispatch (Java) decides at run time

• Dynamic dispatch is slower
Ø In mid to late 90s, active research on how to decrease time

13

What Will This Code Output?

Oct 1, 2021 Sprenkle - CSCI209 14

class Parent {
public Parent() {}

public void method1() {
System.out.println("Parent: method1");

}

public void method2() {
System.out.println("Parent: method2");
method1();

}
}

class Child extends Parent {
public Child() {}

public void method1() {
System.out.println("Child: method1");

}
}

public class DynamicDispatchExample {
public static void main(String[] args) {

Parent p = new Parent();
Child c = new Child();

p.method1();
System.out.println("");

c.method1();
System.out.println("");

p.method2();
System.out.println("");

c.method2();
System.out.println("");

}
}

See handout

Think on your own for 1 minute

14

10/1/21

8

What Will This Code Output?

Oct 1, 2021 Sprenkle - CSCI209 15

class Parent {
public Parent() {}

public void method1() {
System.out.println("Parent: method1");

}

public void method2() {
System.out.println("Parent: method2");
method1();

}
}

class Child extends Parent {
public Child() {}

public void method1() {
System.out.println("Child: method1");

}
}

public class DynamicDispatchExample {
public static void main(String[] args) {

Parent p = new Parent();
Child c = new Child();

p.method1();
System.out.println("");

c.method1();
System.out.println("");

p.method2();
System.out.println("");

c.method2();
System.out.println("");

}
}

Parent: method1

Child: method1

Parent: method2
Parent: method1

Parent: method2
Child: method1

15

Oct 1, 2021 Sprenkle - CSCI209 16

Inheritance Rules: Access Modifiers

•Why?
•What would happen if a method in the parent

class is public but the child class’s method is
private?

Access modifiers in child classes
• Can make access to child class less restrictive but

not more restrictive

16

10/1/21

9

Inheritance Rules: Access Modifiers

• If a public method could be overridden as a protected or
privatemethod, child objects would not be able to respond to
the same method calls as parent objects

• When a method is declared public in the parent, the method
remains public for all that class’s child classes

• Remembering the rule: compiler error to override a method with
a more restricted access modifier
Oct 1, 2021 Sprenkle - CSCI209 17

Access modifiers in child classes
• Can make access to child class less restrictive but

not more restrictive

17

Oct 1, 2021 Sprenkle - CSCI209 18

Summary of Inheritance
•Remove repetitive code by modeling the “is-a”

hierarchy
ØMove “common denominator” code up the

inheritance chain
•Don’t use inheritance unless all inherited

methods make sense
•Use polymorphism

18

10/1/21

10

CSCI112 Review
•What are abstract classes?
•What are interfaces?

Oct 1, 2021 Sprenkle - CSCI209 19

19

ABSTRACT CLASSES

Oct 1, 2021 Sprenkle - CSCI209 20

20

10/1/21

11

Oct 1, 2021 Sprenkle - CSCI209 21

Abstract Classes
•Classes in which not all methods are

implemented are abstract classes
ØSome methods defined, others not defined
•Partial implementation

Øpublic abstract class ZooAnimal
•Declared but not implemented methods are

labeled as abstract
public abstract void exercise(Environment env);

21

Oct 1, 2021 Sprenkle - CSCI209 22

Abstract Classes
•An abstract class cannot be instantiated

Øi.e., can’t create an object of that class
ØBut can have a constructor!

•Child class of an abstract class can only be
instantiated if it overrides and implements every
abstract method of parent class
ØIf child class does not override all abstract methods, it is

also abstract

22

10/1/21

12

Abstract Classes
•static, private, and final methods cannot be
abstract
ØB/c cannot be overridden by a child class

•final class cannot contain abstract methods

•A class can be abstract even if it has no abstract
methods
ØUse when implementation is incomplete and is meant to serve

as a parent class for class(es) that complete the
implementation

•Can have array of objects of abstract class
ØJVM will do dynamic dispatch for methods

Oct 1, 2021 Sprenkle - CSCI209 23

Why?

23

Oct 1, 2021 Sprenkle - CSCI209 25

Summary: Defining Abstract Classes
➨Define a class as abstract when have partial

implementation

25

10/1/21

13

INTERFACES

Oct 1, 2021 Sprenkle - CSCI209 26

26

Oct 1, 2021 Sprenkle - CSCI209 27

Interfaces
•Pure specification, no implementation
ØA set of requirements for classes to conform to

•Classes can implement one or more interfaces

27

10/1/21

14

A Scenario
•We have a Customer Service Driver program
•Depending on the circumstances, we may want to

use different algorithms to determine the service
order

•Possible algorithms
ØFIFO
ØHighestPayingFirst
ØCriticalProblemFirst
ØShortestJobFirst

Oct 1, 2021 Sprenkle - CSCI209 28

28

Design Solution
•Interface CustomerServiceOrder

Øpublic Customer getNextCustomer();
Øpublic boolean hasNext();

•Driver program snippet

Oct 1, 2021 Sprenkle - CSCI209 29

CustomerServiceOrder customerOrder = …;
while(agent.isAvailable()) {

if(customerOrder.hasNext()) {
Customer next = customerOrder.getNextCustomer();
agent.handle(next);

}
}

29

10/1/21

15

Design Solution
• Classes adhere to (i.e., implement) the interface, implementing

different algorithms
ØFIFOOrder
ØHighestPayingFirstOrder
ØCriticalProblemFirstOrder
ØShortestJobFirstOrder

• Assign objects of any of these types to the interface variable

Oct 1, 2021 Sprenkle - CSCI209 30

CustomerServiceOrder customerOrder = new FIFOOrder();
while(agent.isAvailable()) {

if(customerOrder.hasNext()) {
Customer next = customerOrder.getNextCustomer();
agent.handle(next);

}
}

Easily change program behavior with only one change in code

30

Oct 1, 2021 Sprenkle - CSCI209 31

Example of an Interface
•Recall: Arrays.sort(array)

ØArrays.sort sorts arrays of any object class that
implements the Comparable interface

•Classes that implement the Comparable interface must
provide a way to decide if one object is less than, greater
than, or equal to another object

31

10/1/21

16

java.lang.Comparable

• Any object that implements Comparable must have a
method named compareTo()

• Returns:
ØReturn a negative integer if this object is less than the object

passed as a parameter
ØReturn a positive integer if this object is greater than the object

passed as a parameter
ØReturn a 0 if the two objects are equal

Oct 1, 2021 Sprenkle - CSCI209 32

public interface Comparable {
int compareTo(Object other);

}

32

Oct 1, 2021 Sprenkle - CSCI209 33

Comparable Interface API/Javadoc
•Specifies what the compareTo() method should

do
•Says which Java library classes implement
Comparable

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/lang/Comparable.html

33

10/1/21

17

Looking Ahead
• Assignment 5: Goblin Game

Ø Can now do the refactoring part
Ø Due Tuesday at 11:59 p.m.

• Exam: Next Friday
Ø Online, timed exam (70 minutes)

• No class next Friday
• Start time 8:30 a.m. Friday, due time Sun 11:59 p.m.

Ø Open book/notes/slides – but do not rely on that
• NOT open internet

Ø Prep document online
Ø 3 sections:

• Very Short Answer, Short Answer, Coding

Oct 1, 2021 Sprenkle - CSCI209 34

34

