Objectives

®*\Wrap up Inheritance
® Interfaces

® Collections

® Generics

Oct 4, 2021 Sprenkle - CSCI209 1

Iteration over Code: Assignment 5

® Demonstrates typical design/implementation process
Start with original code design
® Inheritance from GamePiece class

Realize it could be designed better
* Make GamePiece class abstract
® Use an array of GamePiece objects
® Easier to add new functionality to Game

® Major part of problem-solving is figuring out how to break problem into
smaller pieces

® Reminders

Heed my warnings
Start simple, small

Oct 4, 2021 Sprenkle - CSCI209 2

Review

® How does Java decide which method to execute for an object?
Example: chicken[1].feed();
® Compare and contrast abstract classes and interfaces
When should a class be abstract?
When should you create/use an interface?
® True or False:
If you extend an abstract class, you have to override all abstract methods.
You can instantiate an abstract class
You can have an object variable of an abstract class
You can have an object variable of an interface

® 112 review: what are lists, sets, and dictionaries?

Mostly 112 review

Oct 4, 2021 Sprenkle - CSCI209 3

Interfaces vs Abstract Classes

Interfaces Abstract Classes
® No implementation ® Contain partial implementation
\/Any class can use — Child classes can’t extend/subclass
Can implement multiple interfaces muItipIe classes
— Implementing methods multiple v Add non-abstract methods without
times breaking subclasses

— Adding a method to interface will
break classes that implement

Oct 4, 2021 Sprenkle - CSCI209 4

PREVENTING INHERITANCE

Oct 4, 2021 Sprenkle - CSCI209

Preventing Inheritance

® Sometimes, you do not want a class to derive from one of your
classes

® A class that cannot be extended is known as a final class

® To make a class final, add the keyword final in the class
definition:

public final class Rooster extends Chicken {

}

® Example of final class: System

Oct 4, 2021 Sprenkle - CSCI209

Final methods

® Can make a method final

Any class derived from this class cannot override the
final methods

class Chicken {
public final String getName() { . . . }

}
® By default, all methodsina final class are

final methods. Why would we want to use final?
What are possible benefits to us, the compiler, ...?

Oct 4, 2021

INTERFACES

Oct 4, 2021 Sprenkle - CSCI209 8

Example Interface: java. lang.Comparable

public interface Comparable {
int compareTo(Object other);
ks

® Any object that implements Comparable must have a
method named compareTo()

® Returns:

Return a negative integer if this object is less than the object
passed as a parameter

Return a positive integer if this object is greater than the object
passed as a parameter

Return a 0 if the two objects are equal

Oct 1, 2021 Sprenkle - CSCI209 9

Implementing an Interface

® In the class definition, specify that the class will
implement the specific interface

public class Chicken implements Comparable

® Provide a definition for all methods specified in
interface

How to determine Chicken order?

Oct 4, 2021 Sprenkle - CSCI209 10

10

Comparable Chickens

One way: order by height
public class Chicken implements Comparable {

public int compareTo(Object otherObject) {
Chicken other = (Chicken) otherObject;
if (height < other.getHeight())
return -1;
if (height > other.getHeight())
return 1;
return 0;
// simpler: return height - other.getHeight();

What if otherObject is not a Chicken?

Oct 4, 2021 Sprenkle - CSCI209 11

11

Testing for Interfaces

® Can also use the 1nstanceof operator to see if an object
implements an interface

e.g., to determine if an object can be compared to
another object using the Comparable interface

if (obj instanceof Comparable) {
// runs if obj 1s an object variable of a class
// that implements the Comparable interface

else {
// runs if it does not implement the interface
Oct 4, 2021 Sprenkle - CSCI209 12

12

Interface Object Variables

® Can use an object variable to refer to an object of
any class that implements an interface

® Using this object variable, can only access the
interface’s methods

® For example...
public void aMethod(Object obj) {

if (obj instanceof Comparable) {
Comparable comp = (Comparable) obj;
boolean res = comp.compareTo(obij2);

}
}

Oct 4, 2021 Sprenkle - CSCI209 13

13

Interface Definitions

public interface Comparable {
int compareTo(Object other);
¥

® Interface methods are public by default
Do not need to specify methods as public

Oct 4, 2021 Sprenkle - CSCI209 14

14

Interface Definitions and Inheritance

® Can extend interfaces

Allows a chain of interfaces that go from general to
more specific

® For example, define an interface for an object
that is capable of moving:

public interface Movable {
void move(double x, double y);
}

Oct 4, 2021 Sprenkle - CSCI209 15

15

Interface Definitions and Inheritance

® A powered vehicle is also Movable

Must also have amilesPerGallon() method, which
will return its gas mileage

public interface Powered extends Movable {
double milesPerGallon();
¥

Oct 4, 2021 Sprenkle - CSCI209 16

16

Interface Definitions and Inheritance

®Powered interface extends Movable interface

® An object that implements Powered interface
must satisfy all requirements of that interface as
well as the parent interface.

A Powered object must have amilesPerGallon()
and move(double x, double y) method

Oct 4, 2021 Sprenkle - CSCI209 17

17

Constants in an Interface

® |f a variable is specified in an interface, it is automatically a
constant:

public static final variable
public interface Powered extends Movable {
double SPEED_LIMIT = 95;

double milesPerGallon();
}

® Example: An object that implements Powered interface has a
constant SPEED_LIMIT defined

Oct 4, 2021 Sprenkle - CSCI209 18

18

Multiple Interfaces

® A class can implement multiple interfaces

Must fulfill the requirements of each interface

public final class String implements
Serializable, Comparable, CharSequence { ..

® Recall: NOT possible with inheritance
A class can only extend (or inherit from) one class

Oct 4, 2021 Sprenkle - CSCI209 19

19

Benefits of Interfaces

® Abstraction

Separate the interface from the implementation

® Allow easier type substitution
We'll see this with Collections

® Classes can implement multiple interfaces

Oct 4, 2021 Sprenkle - CSCI209 20

20

Interface Summary

® Contain only object (not class) methods
® All methods are public
Implied if not explicit
®Fields are constants that are static and final

® A class can implement multiple interfaces
Separated by commas in definition

Oct 4, 2021 Sprenkle - CSCI209 21

21

Interfaces vs Abstract Classes

Interfaces Abstract Classes
® No implementation ® Contain partial implementation
\/Any class can use — Child classes can’t extend/subclass
Can implement multiple interfaces muItipIe classes
— Implementing methods multiple v Add non-abstract methods without
times breaking subclasses

— Adding a method to interface will
break classes that implement

Oct 4, 2021 Sprenkle - CSCI209 22

22

One Option: Use Both!

® Define interface, e.g., MyInterface

® Define abstract class, e.g.,
AbstractMyInterface

Implements interface

Provides implementation for some methods

Oct 4, 2021 Sprenkle - CSCI209 23

23

Summary: Abstract Classes and Interfaces

® |[mportant structures

Make code easier to change

e \Will return to/apply these ideas throughout the
course

® Concepts are used in many languages besides
Java

Java provides tools to enforce these concepts

Oct 4, 2021 Sprenkle - CSCI209 24

24

COLLECTIONS

Oct 4, 2021 Sprenkle - CSCI209

25

Collections

® Sometimes called containers
® Group multiple elements into a single unit

® Store, retrieve, manipulate, and communicate
aggregate data
® Represent data items that form a natural group
Poker hand (a collection of cards)
Mail folder (a collection of messages)

Telephone directory (a mapping of names to phone
numbers)

Oct 4, 2021 Sprenkle - CSCI209

26

Java Collections Framework

® Unified architecture for representing and
manipulating collections

® More than arrays

More flexible, functionality, dynamic sizing

eln java.util package

Oct 4, 2021 Sprenkle - CSCI209 27

27

Collections Framework

® Interfaces

Abstract data types that represent collections

Collections can be manipulated independently of implementation
®* Implementations

Concrete implementations of collection interfaces

Reusable data structures
® Algorithms

Methods that perform useful computations on collections, e.g., searching
and sorting

Reusable functionality

Polymorphic: same method can be used on many different implementations
of collection interface

Oct 4, 2021 Sprenkle - CSCI209 28

28

Core Collection Interfaces

® Encapsulate different types of collections

Collection

I l
COC [ome [omme

‘ SortedMap

SortedSet

Oct 4, 2021 Sprenkle - CSCI209

29

29

GENERICS

Oct 4, 2021 Sprenkle - CSCI209

30

30

Generic Collection Interfaces

® Declaration of the Collection interface: .
ype

public interface Collection<E>+4T parameter

<E> means interface is generic for element class

® When declare a Collection, specify type of object it contains

Allows compiler to verify that object’s type is correct
® Reduces errors at runtime

® Example, a hand of cards:

Always declare type

contained in collections
List<Card> hand = new ArraylList<Card>();
Added in Java 7:

List<Card> hand = new ArraylList<>();

Oct 4, 2021 Sprenkle - CSCI209 31

31

Comparing: Before & After Generics

® Before Generics

List mylList = new LinkedList(); e Listof Objects
myList.add(new Card(4, "clubs"));
Y * Need to cast to the

Oct 4, 2021 Sprenkle - CSCI209 32

32

Comparing: Before & After Generics

® Before Generics

List myList = new LinkedList(); * List of Objects
myList.add(new Card(4, "clubs"));
Y C () * Need to cast to the

Card x = (Card) mylList.get(@); desired child class

® After Generics

List<Card> myList = new LinkedList<>(); ° If you try to add not-a-
myList.add(new Card(4, "clubs")); Card, compiler gives

Card x = myList.get(@); an error

v" Improved readability and robustness

Oct 4, 2021 Sprenkle - CSCI209 33

33

Comparable Interface

® Also uses Generics

public interface Comparable<T>

t

The type it compares

/

int compareTo(T o)

Oct 4, 2021 Sprenkle - CSCI209 34

34

Generics Use Comparison for Comparable

Without Generics

public int compareTo(Object otherObject) {
if(! (otherObject instanceof Chicken)) {
return 1;
¥
Chicken other = (Chicken) otherObject;
if (height < other.getHeight())

return -1; . .
if (height > other.getHeight()) With Generics
return 1; public int compareTo(Chicken other) {
return 0; if (height < other.getHeight())
b return -1;
if (height > other.getHeight())
return 1;
return 0;
+
Oct 4, 2021 Sprenkle - CSCI209 35

35

Types Allowed with Generics

® Can only contain Objects, not primitive types

® Autoboxing and Autounboxing to the rescue!

Oct 4, 2021 Sprenkle - CSCI209 36

36

WRAPPER CLASSES

Oct 4, 2021 Sprenkle - CSCI209 37

37

Wrapper Classes

®* Sometimes need an instance of an Object
To store in Lists and other Collections

® Each primitive type has a Wrapper class
Examples: Integer, Double, Long, Character, ...

® Include functionality of parsing their respective

data type€int x = 10;
Integer y
Integer z

Integer.valueOf(x);
Integer.valueOf("10");

|

Oct 4, 2021 Sprenkle - CSCI209 38

38

Wrapper Classes

® Autoboxing — automatically create a wrapper object

// implicitly 11 converted to Integer,
// e.g., Integer.valueOf(11)
Integer y = 11;

® Autounboxing — automatically extract a primitive type

Integer x = Integer.valueOf(11l);
int y = x.intValue(Q);
int z = x; // implicitly, x is x.intValue();

Converts right side to whatever is needed on the left

Oct 4, 2021 Sprenkle - CSCI209 39

39

Effective Java: Unnecessary Autoboxing

Long sum = 0OL;

for (long i=0; i < Integer.MAX_VALUE; i++) {
sum += 1;

}

System.out.println(sum);

* Can you find the inefficiency from object creation?
* How can you fix the inefficiency?

Oct 4, 2021 Sprenkle - CSCI209 Autobox. quq 40

40

Effective Java: Unnecessary Autoboxing

Long sum = 0OL;
for (long 1=0; 1 < Integer.MAX_VALUE; i++) {

sum += 1i; .
’ Constructs 231 Long instances

¥
System.out.println(sum);

* How can you fix the inefficiency?

Autobox. java
AutoboxFixed. java

Oct 4, 2021 Sprenkle - CSCI209

41

41

Effective Java: Unnecessary Autoboxing

Long sum = 0OL;
for (long 1=0; 1 < Integer.MAX_VALUE; i++) {
sum +=1; Constructs 231 Long instances

¥
System.out.println(sum);

Lessons:
* Prefer primitives to boxed primitives
* Watch for unintentional autoboxing

Autobox. java
AutoboxFixed. java

Oct 4, 2021 Sprenkle - CSCI209

42

42

LISTS

Oct 4, 2021 Sprenkle - CSCI209 43

43

List Interface

® An ordered collection of elements
® Can contain duplicate elements

® Has control over where objects are stored in the
list

Oct 4, 2021 Sprenkle - CSCI209 44

44

List Interface

®boolean add(<E> o)

Boolean so that List can refuse some elements
e e.g., refuse addingnull elements

®<E> get(int index)
Returns element at the position index
Different from Python: no shorthand
* Can’t write 'P['Sit.ms]
®int size()
Returns the number of elements in the list
® And more!
contains, remove, toArray, ...

Oct 4, 2021 Sprenkle - CSCI209 45

45

Common L1st Implementations

®Arraylist ®linkedList
Resizable array Use if adding elements to
Used most frequently ends of list
Fast Use if often delete from
middle of list
When should you use one vs the other? Implements Deque and

other methods so that it
can be used as a stack or
gueue

How would you find the other implementations of L1st?

46

Oct 4, 2021

46

Implementation vs. Interface

Implementation choice only affects performance

® Preferred Style:
Choose an implementation

Assign collection to variable of corresponding interface
type

Interface variable = new Implementation();

Example: List<Card> hand = new ArraylList<>();

®* Methods should accept interfaces—not

implementations Why is this the preferred style?

public void method(Interface var) {.}

47

47

Implementation vs. Interface

Implementation choice only affects performance

® Preferred Style:

Choose an implementation

Assign collection to variable of corresponding interface type
® Why?

Program does not depend on a given implementation’s

methods

® Access only using interface’s methods

Programmer can change implementations

® Performance concerns or behavioral details

Oct 4, 2021 Sprenkle - CSCI209 48

48

Looking Ahead

® Assignment 5 — due Tuesday at 11:59 p.m.
®Exam 1 on Friday!

Bring your questions on Wednesday

SSSSS kle - CSCI209

49

