Objectives

® Packages
® Collections
®* Traversing Collections

Oct 6, 2021 Sprenkle - CSCI209 1

Reflection: Assignment 5

® Bringing together a variety of concepts:
Inheritance
Abstract classes
Dynamic dispatch/polymorphism
Final methods
® | everaging all you have access to, e.g.,
What you inherited, parameters, AND their APIs

® My hope: your answers to the design decisions will be easy
for you to express because you understand them well

Oct 6, 2021 Sprenkle - CSCI209 2

Review

1.

NOUA W

8.

How do we specify that a class/method cannot be subclassed/overridden,
respectively?

What is the keyword for specifying that your class adheres to an interface?
What are the 3 components of the Java Collection Framework?

What data types can collections hold?

How can we convert a primitive type into its respective wrapper class type?
What is the syntax to say what type the collection holds?

Why is the preference to write code as

Interface variable = new Implementation();
Example: List<Card> hand = new ArraylList<>();

What Collection interface, implementations did we discuss?

Oct 6, 2021 Sprenkle - CSCI209 3

PACKAGES

Oct 6, 2021 Sprenkle - CSCI209 4

Review: Packages

® Hierarchical structure of Java classes
Directories of directories

java
— lang
I:Object
String Fully qualified name: java.lang.String
— net
— util —> (This is where the Collection classes are.)
L Date

® Use import to access packages

Oct 6, 2021 Sprenkle - CSCI209 5

Importing Packages

® Can import one class at a time or all the classes
within a package
® Examples:
import java.util.Date;

LMPOrt JAVO.10.7; e Import entire package

* form may increase compile time

® BUT, no effect on run-time performance

Oct 6, 2021 Sprenkle - CSCI209 6

Packaging Code

® To reduce chance of a conflict between names of classes, put classes in
packages

e Use package keyword to say that a class belongs to a package:
package java.util;
First line in class file

® Typically, use a unique prefix, similar to domain names
com.ibm
edu.wlu.cs.logic

® Organize code by the packages

For example, code in edu.wlu.cs.logic package would be ina logic
directory inside a CS directory inside a WLu directory inside a edu directory

Oct 6, 2021 We will start organizing our code in packages soon 7

Review: Collections Framework

® Interfaces

Abstract data types that represent collections

Collections can be manipulated independently of implementation
®* Implementations

Concrete implementations of collection interfaces

Reusable data structures
® Algorithms

Methods that perform useful computations on collections, e.g., searching
and sorting

Reusable functionality

Polymorphic: same method can be used on many different implementations
of collection interface

Oct 6, 2021 Sprenkle - CSCI209 8

Review: Core Collection Interfaces

® Encapsulate different types of collections

D

TS D IE

public abstract class AbstractlList<E> extends
AbstractCollection<E> implements List<E>

Oct 6, 2021 Sprenkle - CSCI209 9

Comparing: Before & After Generics

® Before Generics

List myList = new LinkedList();
myList.add(new Card(4, "clubs"));

Eard x = (Card) myList.get(0);

® After Generics

List<Card> myList = new LinkedlList<>();
myList.add(new Card(4, "clubs"));

Card x = myList.get(@);

v' Improved readability and robustness

Oct 6, 2021 Sprenkle - CSCI209 10

10

LISTS

Oct 6, 2021

Sprenkle - CSCI209

11

Review: Lists

® Interface: List

® Common implementations: ArraylList,

LinkedList

Sprenkle - CSCI209

12

Discussion of Deck Class

cards.Deck. java

Oct 6, 2021 Sprenkle - CSCI209 13
Oct 6, 2021 Sprenkle - CSCI209 14

14

Set Interface

®* No duplicate elements

Needs to determine if two elements are “logically” the
same (equals method)

® Models mathematical set abstraction

Oct 6, 2021 Sprenkle - CSCI209

15

Declaring Sets

®like Lists, declare type that Set contains:

Set<String> mySet = new HashSet<>();

Oct 6, 2021 Sprenkle - CSCI209 16

16

Set Interface

®poolean add(<E> o)

Add to set, only if not already present; returns true if
added

®int size()
Returns the number of elements in the set
e And more! (contains, remove,
toArray, ..)
Note: no get method -- get #3 from the set?

Oct 6, 2021 Sprenkle - CSCI209 17

17

Some Set Implementations

®HashSet &= ®TreeSet
Implements set using hash Implements set using a tree
table ® add, remove, and contains

® add, remove, and contains each execute in O(log n) time

each execute in O(1) time Sorts
Used more frequently
Faster than TreeSet

No ordering

Oct 6, 2021 Sprenkle - CSCI209 18

18

FindDuplicates Problem

®* From the array of command-line arguments,

identify (i.e. print) the duplicates
public static void main(String args[]) {
HashSet()

Set interface:

« boolean add(<E> o)

« 1int size()

« boolean contains(Object o)
ks

Oct 6, 2021 Sprenkle - CSCI209 19

19

FindDuplicates: One solution

public static void main(String args[]) {
Set<String> s = new HashSet<>();

for (String a : args) {
1f (!s.add(a)) {

System.out.println("Duplicate detected: " + a);
3
3
System.out.println(s.size() + " distinct words detected: "
+ S);

How much does code changes if s is a TreeSet?

Oct 6, 2021 Sprenkle - CSCI209 20

20

MAPS

Oct 6, 2021 Sprenkle - CSCI209

21

21

Maps

® Python called these dictionaries

® Maps keys (of type <K>) to values (of type <V>)

® No duplicate keys
Each key maps to at most one value

Oct 6, 2021 Sprenkle - CSCI209

22

22

Declaring Maps

® Declare types for both keys and values

®class HashMap<K, V>
Map<String, Integer> map = new HashMap<>();

Keys are Strings Values are Integers

Map<String, List<String>> map = new HashMap<>();

/

Keys are Strings Values are Lists of Strings

Oct 6, 2021 Sprenkle - CSCI209 23

23

Map Interface
o <V> put(<K> key, <V> value)

Returns old value that key mapped to

®<V> get(Object key)

Returns value at that key (or null if no mapping)

®Set<kK> keySet()

Returns the set of keys

And more ...

Oct 6, 2021 Sprenkle - CSCI209 24

24

A few Map Implementations

®HashMap

Fast
®TreeMap

Sorting

Key-ordered iteration
®| 1nkedHashMap

Fast

Insertion-order iteration

Oct 6, 2021 Sprenkle - CSCI209

25

ALGORITHMS

Oct 6, 2021 Sprenkle - CSCI209

26

Collections Framework’s Algorithms

® Polymorphic algorithms
® Reusable functionality
®*Implemented in the Collections class

Similar to Arrays class, which operates on arrays
Static methods, 15t argument is the Collection

Oct 6, 2021 Sprenkle - CSCI209 27

27

Overview of Available Algorithms

—

®Sorting — optional Comparator
® Shuffling —
® Searching — binarySearch

*Only Lists

—

® Routine data manipulation: reverse*, copy*, fill*,
swap®*, addAll

® Composition — frequency, disjoint
® Finding min, max

Oct 6, 2021 Sprenkle - CSCI209 28

28

TRAVERSING COLLECTIONS

Oct 6, 2021 Sprenkle - CSCI209 29

29

Traversing Collections: For-each Loop

® For-each loop:

for (Object o : collection)
System.out.println(o);

Or whatever data type is appropriate

eValid for all Collections

Maps (and its implementations) are not
Collections

® But, Map’s keySet() isa Set andvalues()isa
Collection

Oct 6, 2021 Sprenkle - CSCI209 30

30

Traversing Lists: Iterator Not covered during class

® Always between two elements

Element(0) Element(1) Element(2) Element(3)

Index: 0 1 2 3 4

Iterator<Integer> i = list.iterator();
while(1i.hasNext()) {
int value = i.next(Q);

Oct 6, 2021 Sprenkle - CSCI209 31

31

Benefits of Collections Framework
o?

Oct 6, 2021 Sprenkle - CSCI209 38

38

Benefits of Collections Framework

® Provides common, well-known interface
Allows interoperability among unrelated APIs
Reduces effort to learn and to use new APIs for different implementations
® Reduces programming effort: provides useful, reusable data structures
and algorithms

® Increases program speed and quality: provides high-performance, high-
guality implementations of data structures and algorithms;
interchangeable implementations = tuning

® Reduces effort to design new APIs: use standard collection interface for
your collection

® Fosters software reuse: New data structures/algorithms that conform
to the standard collection interfaces are reusable

Oct 6, 2021 Sprenkle - CSCI209 39

39

Looking Ahead

® Exam 1 — Friday

Online, timed exam: 70 minutes
® No class Friday
® Opens: Friday at 8:30 a.m.; Closes: Sunday at 11:59 p.m.

Open book/notes/slides — but do not rely on that
® NOT open internet

Prep document online
3 sections:
® Very Short Answer, Short Answer, Coding

® Questions

Oct 6, 2021 Sprenkle - CSCI209 40

40

