
10/6/21

1

Objectives
•Packages
•Collections
•Traversing Collections

Oct 6, 2021 Sprenkle - CSCI209 1

1

Reflection: Assignment 5
• Bringing together a variety of concepts:

ØInheritance
ØAbstract classes
ØDynamic dispatch/polymorphism
ØFinal methods

• Leveraging all you have access to, e.g.,
ØWhat you inherited, parameters, AND their APIs

• My hope: your answers to the design decisions will be easy
for you to express because you understand them well

Oct 6, 2021 Sprenkle - CSCI209 2

2

10/6/21

2

Review
1. How do we specify that a class/method cannot be subclassed/overridden,

respectively?
2. What is the keyword for specifying that your class adheres to an interface?
3. What are the 3 components of the Java Collection Framework?
4. What data types can collections hold?
5. How can we convert a primitive type into its respective wrapper class type?
6. What is the syntax to say what type the collection holds?
7. Why is the preference to write code as

8. What Collection interface, implementations did we discuss?

Oct 6, 2021 Sprenkle - CSCI209 3

Interface variable = new Implementation();
Example: List<Card> hand = new ArrayList<>();

3

PACKAGES

Oct 6, 2021 Sprenkle - CSCI209 4

4

10/6/21

3

Review: Packages
• Hierarchical structure of Java classes

ØDirectories of directories

• Use import to access packages
Oct 6, 2021 Sprenkle - CSCI209 5

java

net

lang

util

Object

Date

Fully qualified name: java.lang.StringString

à (This is where the Collection classes are.)

5

Importing Packages
•Can import one class at a time or all the classes

within a package
•Examples:

Ø* form may increase compile time
•BUT, no effect on run-time performance

Oct 6, 2021 Sprenkle - CSCI209 6

import java.util.Date;
import java.io.*; Import entire package

6

10/6/21

4

Packaging Code
• To reduce chance of a conflict between names of classes, put classes in
packages

• Use package keyword to say that a class belongs to a package:
Ø package java.util;
Ø First line in class file

• Typically, use a unique prefix, similar to domain names
Ø com.ibm
Ø edu.wlu.cs.logic

• Organize code by the packages
Ø For example, code in edu.wlu.cs.logic package would be in a logic

directory inside a cs directory inside a wlu directory inside a edu directory

Oct 6, 2021 Sprenkle - CSCI209 7We will start organizing our code in packages soon

7

Review: Collections Framework
• Interfaces

Ø Abstract data types that represent collections
Ø Collections can be manipulated independently of implementation

• Implementations
Ø Concrete implementations of collection interfaces
Ø Reusable data structures

• Algorithms
Ø Methods that perform useful computations on collections, e.g., searching

and sorting
Ø Reusable functionality
Ø Polymorphic: same method can be used on many different implementations

of collection interface

Oct 6, 2021 Sprenkle - CSCI209 8

8

10/6/21

5

Review: Core Collection Interfaces
•Encapsulate different types of collections

Oct 6, 2021 Sprenkle - CSCI209 9

public abstract class AbstractList<E> extends
AbstractCollection<E> implements List<E>

9

Comparing: Before & After Generics
•Before Generics

•After Generics

Oct 6, 2021 Sprenkle - CSCI209 10

List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

List<Card> myList = new LinkedList<>();
myList.add(new Card(4, "clubs"));
…
Card x = myList.get(0);

ü Improved readability and robustness

10

10/6/21

6

LISTS

Oct 6, 2021 Sprenkle - CSCI209 11

11

Review: Lists
•Interface: List
•Common implementations: ArrayList,
LinkedList

Oct 6, 2021 Sprenkle - CSCI209 12

12

10/6/21

7

Discussion of Deck Class

Oct 6, 2021 Sprenkle - CSCI209 13

cards.Deck.java

13

SETS

Oct 6, 2021 Sprenkle - CSCI209 14

14

10/6/21

8

Set Interface
•No duplicate elements
ØNeeds to determine if two elements are “logically” the

same (equals method)

•Models mathematical set abstraction

Oct 6, 2021 Sprenkle - CSCI209 15

15

Declaring Sets
•Like Lists, declare type that Set contains:

Oct 6, 2021 Sprenkle - CSCI209 16

Set<String> mySet = new HashSet<>();

16

10/6/21

9

Set Interface
•boolean add(<E> o)
ØAdd to set, only if not already present; returns true if

added
•int size()
ØReturns the number of elements in the set

•And more! (contains, remove,
toArray, …)
ØNote: no get method -- get #3 from the set?

Oct 6, 2021 Sprenkle - CSCI209 17

17

Some Set Implementations
•HashSet

ØImplements set using hash
table
• add, remove, and contains

each execute in O(1) time

ØUsed more frequently
ØFaster than TreeSet
ØNo ordering

•TreeSet
ØImplements set using a tree

• add, remove, and contains
each execute in O(log n) time

ØSorts

Oct 6, 2021 Sprenkle - CSCI209 18

18

10/6/21

10

FindDuplicates Problem
•From the array of command-line arguments,

identify (i.e. print) the duplicates

Oct 6, 2021 Sprenkle - CSCI209 19

public static void main(String args[]) {

}

HashSet()

Set interface:
• boolean add(<E> o)
• int size()
• boolean contains(Object o)

19

FindDuplicates: One solution

Oct 6, 2021 Sprenkle - CSCI209 20

public static void main(String args[]) {
Set<String> s = new HashSet<>();
for (String a : args) {

if (!s.add(a)) {
System.out.println("Duplicate detected: " + a);

}
}
System.out.println(s.size() + " distinct words detected: "

+ s);
}

How much does code changes if s is a TreeSet?

20

10/6/21

11

MAPS

Oct 6, 2021 Sprenkle - CSCI209 21

21

Maps
•Python called these dictionaries

•Maps keys (of type <K>) to values (of type <V>)

•No duplicate keys
ØEach key maps to at most one value

Oct 6, 2021 Sprenkle - CSCI209 22

22

10/6/21

12

Declaring Maps
•Declare types for both keys and values
•class HashMap<K,V>

Oct 6, 2021 Sprenkle - CSCI209 23

Keys are Strings Values are Lists of Strings

Map<String, List<String>> map = new HashMap<>();

Keys are Strings Values are Integers

Map<String, Integer> map = new HashMap<>();

23

Map Interface
•<V> put(<K> key, <V> value)

ØReturns old value that key mapped to

•<V> get(Object key)
ØReturns value at that key (or null if no mapping)

•Set<K> keySet()
ØReturns the set of keys

Oct 6, 2021 Sprenkle - CSCI209 24

And more …

24

10/6/21

13

A few Map Implementations
•HashMap
ØFast

•TreeMap
ØSorting
ØKey-ordered iteration

•LinkedHashMap
ØFast
ØInsertion-order iteration

Oct 6, 2021 Sprenkle - CSCI209 25

25

ALGORITHMS

Oct 6, 2021 Sprenkle - CSCI209 26

26

10/6/21

14

Collections Framework’s Algorithms
•Polymorphic algorithms
•Reusable functionality
•Implemented in the Collections class
ØSimilar to Arrays class, which operates on arrays
ØStatic methods, 1st argument is the Collection

Oct 6, 2021 Sprenkle - CSCI209 27

27

Overview of Available Algorithms
•Sorting – optional Comparator
•Shuffling
•Searching – binarySearch
•Routine data manipulation: reverse*, copy*, fill*,

swap*, addAll
•Composition – frequency, disjoint
•Finding min, max

Oct 6, 2021 Sprenkle - CSCI209 28

* Only Lists

28

10/6/21

15

TRAVERSING COLLECTIONS

Oct 6, 2021 Sprenkle - CSCI209 29

29

Traversing Collections: For-each Loop
•For-each loop:

•Valid for all Collections
ØMaps (and its implementations) are not
Collections
•But, Map’s keySet() is a Set and values() is a
Collection

Oct 6, 2021 Sprenkle - CSCI209 30

for (Object o : collection)
System.out.println(o);

Or whatever data type is appropriate

30

10/6/21

16

Traversing Lists: Iterator
•Always between two elements

Oct 6, 2021 Sprenkle - CSCI209 31

Iterator<Integer> i = list.iterator();
while(i.hasNext()) {

int value = i.next();
…

}

Not covered during class

31

Benefits of Collections Framework
•?

Oct 6, 2021 Sprenkle - CSCI209 38

38

10/6/21

17

Benefits of Collections Framework
• Provides common, well-known interface

Ø Allows interoperability among unrelated APIs
Ø Reduces effort to learn and to use new APIs for different implementations

• Reduces programming effort: provides useful, reusable data structures
and algorithms

• Increases program speed and quality: provides high-performance, high-
quality implementations of data structures and algorithms;
interchangeable implementations à tuning

• Reduces effort to design new APIs: use standard collection interface for
your collection

• Fosters software reuse: New data structures/algorithms that conform
to the standard collection interfaces are reusable

Oct 6, 2021 Sprenkle - CSCI209 39

39

Looking Ahead
•Exam 1 – Friday

ØOnline, timed exam: 70 minutes
• No class Friday
• Opens: Friday at 8:30 a.m.; Closes: Sunday at 11:59 p.m.

ØOpen book/notes/slides – but do not rely on that
• NOT open internet

ØPrep document online
Ø3 sections:

• Very Short Answer, Short Answer, Coding
•Questions

Oct 6, 2021 Sprenkle - CSCI209 40

40

