
10/11/21

1

Objectives
•Exceptions
•Eclipse

Oct 11, 2021 Sprenkle - CSCI209 1

1

EXCEPTIONS

Oct 11, 2021 Sprenkle - CSCI209 2

2

10/11/21

2

Errors
•Programs encounter errors when they run

ØUsers may enter data in the wrong form
ØFile may not exist
ØProgram code has bugs!*

•When an error occurs, a program should do one of
two things:
ØRevert to a stable state and continue
ØAllow the user to save data and then exit the program

gracefully

Oct 11, 2021 Sprenkle - CSCI209 3* (Of course, not your programs)

3

Java Method Behavior
•Normal/correct case: return specified return type
•Error case: does not return anything, throws an
Exception
ØAn exception is an event that occurs during execution

of a program that disrupts normal flow of program’s
instructions

ØException: object that encapsulates error
information

Oct 11, 2021 Sprenkle - CSCI209 4

Similar to Python

4

10/11/21

3

Handling Exceptions
•JVM’s exception-handling mechanism searches

for an exception handler—the error recovery
code
ØException handler deals with

a particular exception
ØSearches call stack for a

method that can handle
(or catch) the exception

1

2

3

4

Call Stack

Search order for handler

Oct 11, 2021 Sprenkle - CSCI209 5

5

Throwable
•All exceptions indirectly derive from Throwable

ØChild classes: Error and Exception
•Important Throwable methods

ØgetMessage()
•Detailed message about error

ØprintStackTrace()
•Prints out where problem occurred and path to reach that point

ØgetStackTrace()
•Get the stack in non-text format

Oct 11, 2021 Sprenkle - CSCI209 6

Error

Throwable

Exception

6

10/11/21

4

Printing Stack Trace Example

Oct 11, 2021 Sprenkle - CSCI209 7

How helpful is this output?
How user friendly is it?

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

7

Error

Throwable

Exception

Exception Classification: Error
•An internal error
•Strong convention: reserved for JVM
ØJVM-generated when resource exhaustion or an

internal problem
•Example: Out of Memory error

•Program’s code should not and can not throw an
object of this type

•This is an example of an Unchecked exception
Oct 11, 2021 Sprenkle - CSCI209 8

When can that happen in Java?

8

10/11/21

5

Error

Throwable

Exception

Exception Classification: Exception
1.RuntimeException:

something that happens because of a programming error
ØUnchecked exception
ØExamples: ArrayOutOfBoundsException, NullPointerException,
ClassCastException

2. Checked exceptions
ØA well-written application should anticipate and recover from these

exceptions
•Compiler enforces

ØExamples: IOException, SQLException

Oct 11, 2021 Sprenkle - CSCI209 9

9

Error

Exception Classification

Oct 11, 2021 Sprenkle - CSCI209 10

Throwable

Exception

IOException
RuntimeException

SQLException

Others…

Unch
eck

ed

Unchecked

Ch
ec
ke
d

Checked

Checked: All non-
RuntimeExceptions

Part of java.lang
package

10

10/11/21

6

Categories of Exceptions
Unchecked
• Any exception that derives from
Error or RuntimeException

• Programmer does not necessarily
create/handle

• Try to prevent them
• Often indicates programmer error

Ø E.g., precondition violations, not
using API correctly

Checked
• Any other exception
• Programmer creates and handles

checked exceptions
• Compiler-enforced checking

Ø Improves reliability*

• For conditions from which caller
can reasonably be expected to
recover

Oct 11, 2021 Sprenkle - CSCI209 11

11

Types of Unchecked Exceptions
1.Derived from the class Error

ØAny line of code can generate because it is an internal JVM
error

ØDon’t worry about what to do if this happens
2.Derived from the class RuntimeException

ØIndicates a bug in the program
ØFix the bug
ØExamples: ArrayOutOfBoundsException,
NullPointerException, ClassCastException

Oct 11, 2021 Sprenkle - CSCI209 12

12

10/11/21

7

Checked Exceptions
•Need to be handled by your program

ØCompiler-enforced
ØImproves reliability*

•For each method, tell the compiler:
ØWhat the method returns
ØWhat could possibly go wrong

• Advertise the exceptions that a method throws
• Helps users of your interface know what method does and lets

them decide how to handle exceptions

Oct 11, 2021 Sprenkle - CSCI209 13

13

THROWING EXCEPTIONS

Oct 11, 2021 Sprenkle - CSCI209 14

14

10/11/21

8

Methods and Exceptions Example
•BufferedReader has method readLine()

ØReads a line from a stream, such as a file or network
connection

•Method header:

•Interpreting the header: readLine will
Øreturn a String (if everything went right)
Øthrow an IOException (if something went wrong)

Oct 11, 2021 Sprenkle - CSCI209 15

public String readLine() throws IOException

Part of Advertising

15

Advertising Checked Exceptions
•Advertising: in Javadoc, document under what

conditions each exception is thrown
Ø@throws tag

•Examples of when your method should advertise the
checked exceptions that it may throw
ØYour method calls a method that throws a checked

exception
ØYour method detects an error in its processing and decides

to throw an exception
Oct 11, 2021 Sprenkle - CSCI209 16

16

10/11/21

9

Example: Passing an Exception “Up”

•readData calls readLine, which can throw an IOException
• If readLine throws this exception to our method

ØreadData throws the exception as well
ØWhoever calls readData will handle exception

Oct 11, 2021 Sprenkle - CSCI209 17

public String readData(BufferedReader in)
throws IOException {

String str1 = in.readLine();
return str1;

} Throws an IOException

17

Example: Throwing An Exception We Created
1.Create a new object of class
IllegalArgumentException
ØClass derived from RuntimeException

2.throw it
ØMethod ends at this point
ØCalling method handles exception

Oct 11, 2021 Sprenkle - CSCI209 18

if (grade < 0 || grade > 100) {
throw new IllegalArgumentException();

}
Equivalent in Python?

18

10/11/21

10

A More Descriptive Exception
•Four constructors for most Exception classes

ØDefault (no parameters)
ØTakes a String message

• Describe the condition that generated this exception more fully
Ø2 more

Oct 11, 2021 Sprenkle - CSCI209 19

Best messages include all state that could have contributed to the problem

if (grade < 0 || grade > 100) {
throw new IllegalArgumentException(

"Grade is not in valid range (0-100)");
}

19

Common Exception Classes

• Both inherit from RuntimeException
• May seem like these cover everything but only used for certain

kinds of illegal arguments and exceptions
• Not used when

ØA null argument passed in; should be a NullPointerException
ØPass in invalid index for an array; should be an
IndexOutOfBoundsException

Oct 11, 2021 Sprenkle - CSCI209 20

Name Purpose
IllegalArgumentException When caller passes in inappropriate argument

IllegalStateException Invocation is illegal because of receiving object’s state.
(Ex: closing a closed window)

20

10/11/21

11

Birthday Error Handling Discussion
•Design decision:

ØSince month and day are not independent, should be set
together rather than separately

•Check all the error cases before setting the instance
variables
ØDon’t want an inconsistent resulting birthday

•IllegalArgumentException is appropriate
ØProgramming error
ØShould catch those errors before executing program

Oct 11, 2021 Sprenkle - CSCI209 21

21

Goal: Failure Atomicity
•After an object throws an exception, the object

should be in a well-defined, usable state
ØA failed method invocation should leave object in state

prior to invocation
•Approaches:

ØCheck parameters/state before performing operation(s)
ØDo the failure-prone operations first
ØUse recovery code to “rollback” state
ØApply to temporary object first, then copy over values

Oct 11, 2021 Sprenkle - CSCI209 22

22

10/11/21

12

Javadoc Guidelines about @throws
•Always report if throw checked exceptions
•Report any unchecked exceptions that the caller

might reasonably want to catch
ØException: NullPointerException
ØAllows caller to handle (or not)
ØDocument exceptions that are independent of the

underlying implementation
•Errors should not be documented as they are

unpredictable

Oct 11, 2021 Sprenkle - CSCI209 23

23

CATCHING EXCEPTIONS

Oct 11, 2021 Sprenkle - CSCI209 24

24

10/11/21

13

Error

Exception Classification

Oct 11, 2021 Sprenkle - CSCI209 25

Throwable

Exception

IOException
RuntimeException

SQLException

Others…

Un
ch
ec
ke
d

Unchecked
Ch

ec
ke
d

Checked

Checked: All non-
RuntimeExceptions

Part of java.lang
package

25

Catching Exceptions
•After we throw an exception, some part of

program needs to catch it
•What does it mean to catch an exception?
ØProgram knows how to deal with the situation that

caused the exception
ØHandles the problem—hopefully gracefully, without

exiting

Oct 11, 2021 Sprenkle - CSCI209 26

26

10/11/21

14

Try/Catch Block
•The simplest way to catch an exception
•Syntax:

Oct 11, 2021 Sprenkle - CSCI209 27

try {
code;
more code;

}
catch (ExceptionType e) {

error code for ExceptionType;
}
catch (ExceptionType2 e) {

error code for ExceptionType2;
}
…

Python equivalent?

27

Try/Catch Block
• Code in try block runs

first
•If try block completes

without an exception,
catch block(s) are not executed

•If try code generates an exception
ØA catch block runs
ØRemaining code in try block is not executed

•If an exception of a type other than ExceptionType is
thrown inside try block, method exits immediately*

Oct 11, 2021 Sprenkle - CSCI209 28

try {
code;
more code;

}
catch (ExceptionType e) {

error code for
ExceptionType

}

28

10/11/21

15

Try/Catch Block
• You can have more than one
catch block
ØTo handle > 1 type of exception

• If exception is not of type
ExceptionType1, falls to
ExceptionType2, and so forth
ØRun the first matching catch block

Oct 11, 2021 Sprenkle - CSCI209 29

try {
code;
more code;

}
catch (ExceptionType e) {

error code for
ExceptionType

}
catch (ExceptionType2 e) {

error code for
ExceptionType2

}

Can catch any exception with Exception e
but won’t have customized messages

29

Try/Catch Example

Oct 11, 2021 Sprenkle - CSCI209 30

public void read(BufferedReader in) {
try {

boolean done = false;
while (!done) {

String line=in.readLine();
// above could throw IOException
if (line == null)

done = true;
}

}
catch (IOException ex) {

ex.printStackTrace();
}

}
Prints out stack trace to method call

that caused the error

30

10/11/21

16

Try/Catch Example

Oct 11, 2021 Sprenkle - CSCI209 31

public void read(BufferedReader in) {
try {

boolean done = false;
while (!done) {

String line=in.readLine();
// above could throw IOException
if (line == null)

done = true;
}

}
catch (IOException ex) {

ex.printStackTrace();
}

}
More precise catch may help pinpoint error

But could result in messier code

31

The finally Block

•Allows you to clean up or do maintenance before
method ends (one way or the other)
ØE.g., closing files or database connections

Oct 11, 2021 Sprenkle - CSCI209 32

try {
…

}
catch (Exception e) {

…
}
finally {

…
}

•Optional: add a finally block after
all catch blocks
ØCode in finally block always runs

after code in try and/or catch blocks
•After try block finishes or, if an exception

occurs, after the catch block finishes

FinallyTest.java

32

10/11/21

17

Practice: try/catch/finally Blocks
•Which statements run if:

1. Neither statement1 nor
statement2 throws an
exception

2. statement1 throws an
EOFException

3. statement2 throws an
EOFException

4. statement1 throws an
IOException

Oct 11, 2021 Sprenkle - CSCI209 33

try {
statement1;
statement2;

}
catch (EOFException e) {

statement3;
statement4;

}
finally {

statement5;
}

33

Practice: try/catch/finally Blocks
• Which statements run if:

1. Neither statement1 nor
statement2 throws an exception
• 1, 2, 5

2. statement1 throws an
EOFException
• 1,3,4,5

3. statement2 throws an
EOFException
• 1,2,3,4,5

4. statement1 throws an
IOException
• 1,5

Oct 11, 2021 Sprenkle - CSCI209 34

try {
statement1;
statement2;

}
catch (EOFException e) {

statement3;
statement4;

}
finally {

statement5;
}

34

10/11/21

18

Catching More Than One Exception Type
• Can catch multiple exception types in one catch block

Oct 11, 2021 Sprenkle - CSCI209 35

try {
statement1;
statement2;

}
catch (EOFException | SQLException e) {

statement3;
statement4;

}
finally {

statement5;
}

35

What to do with a Caught Exception?
•Dump the stack after the exception occurs
ØWhat else can we do?

•Generally, two options:
1. Catch the exception and recover from it
2. Pass exception up to whoever called it

Oct 11, 2021 Sprenkle - CSCI209 36

36

10/11/21

19

To Throw or Catch?
•Problem: lower-level exception

propagated up to higher-level code
•Example: user enters account

information and gets exception message
“field exceeds allowed length in
database”
ØLost context
ØLower-level detail polluting higher-level API

Oct 11, 2021 Sprenkle - CSCI209 37

Solution: higher-levels should catch lower-level exceptions
and throw them in terms of higher-level abstraction

GUI

DB

…

Exception
here

Handled
here

37

Exception Translation
•Special case:

Exception Chaining
ØWhen higher-level exception needs info from lower-

level exception

Oct 11, 2021 Sprenkle - CSCI209 38

try {
// Call lower-level abstraction

}
catch (LowerLevelException ex) {

// log exception …
throw new HigherLevelException(…);

}

try {
// Call lower-level abstraction

}
catch (LowerLevelException cause) {

// log exception …
throw new HigherLevelException(cause);

}

Most standard
Exceptions have this

constructor

38

10/11/21

20

Guidelines for Exception Translation
•Try to ensure that lower-level APIs succeed
ØEx: verify that your parameters satisfy invariants

•Insulate higher-level from lower-level exceptions
ØHandle in some reasonable way
ØAlways log problem so admin can check

•If can’t do previous two, then use exception
translation

Oct 11, 2021 Sprenkle - CSCI209 39

39

Summary: Methods Throwing Exceptions
•API documentation tells you if a method can throw

an exception
ØIf so, you must handle it

•If your method could possibly throw an exception
(by generating it or by calling another method that
could), advertise it!
ØIf you can’t handle every error, that’s OK…let whoever is

calling you worry about it
ØHowever, they can only handle the error if you advertise

the exceptions you can’t deal with
Oct 11, 2021 Sprenkle - CSCI209 40

40

10/11/21

21

Oct 11, 2021 Sprenkle - CSCI209 41

41

•Open source integrated development environment
(IDE) for Java

•Described as “an open extensible IDE for anything
and nothing in particular”

•Provides a robust Java development environment
•Incorporates popular software development tools

like JUnit and git
•Plugins allow extensibility

https://www.eclipse.org/

Oct 11, 2021 Sprenkle - CSCI209 42

42

10/11/21

22

Project/Code Organization
• workspace directory contains all projects
ØLocated in your home directory, unless you specified

otherwise
•Use projects to organize your code
•Within a project
Øsrc/ directory contains .java files
Øbin/ directory contains .class files
•Often hidden in GUI

Oct 11, 2021 Sprenkle - CSCI209 43

43

Java Made Easier
• Creating class’s basic functionality

Ø See Source and Refactor menus
• Gives you a list of methods for an object

Ø After you type object.
Ø Then shows parameters for methods

• Automatically creates template of Javadoc
Ø When you type /**

• Autocompletion of variables, methods
• Formatting code …
• Shows unused fields/variables
• Shows compiler errors
• …

Oct 11, 2021 Sprenkle - CSCI209 44

44

10/11/21

23

Eclipse Demo
• Create a new Birthday class

Ø Generate main method,
Comments

• Demonstrate Source menu
Ø Generate constructor, toString
Ø Override equals method

• Create a String object, see
methods used

• Demonstrate Refactor menu
Ø Rename a field
Ø Extract a method (month name)

• Run the Birthday Class (main)
Ø Command line arguments

• Using git

Oct 11, 2021 Sprenkle - CSCI209 45

Why can a Java IDE provide
this functionality?

45

Eclipse Hints
•After you have written a method, type

before the method, and then hit enter and the
Javadocs comment template will be automatically
generated for you
•Use command-spacebar for possible

completions
•Use command-shift-F to format code

Oct 11, 2021 Sprenkle - CSCI209 46

/**

46

10/11/21

24

Eclipse Tradeoffs
• Very helpful – after you know what

you’re doing
Ø You know

• Code is compiled before executed
• Structure of classes
• How to fix errors

• Eclipse can handle the “routine”
for you
Ø That wasn’t “routine” for you a few

weeks ago
Ø Help you focus on the important

design considerations

• Gives suggestions for fixes
Ø You need to think through what the

appropriate fix is
• Sometimes, it’s “I’m not done yet”

Ø Don’t say “Eclipse made me do
<something>”

• Eclipse is a beast (memory hog)
Ø If you have less than ~8GB of

memory, Eclipse will be slow

Oct 11, 2021 Sprenkle - CSCI209 47

47

Looking Ahead
•Assignment 6 – due next Tuesday
ØEclipse development practice
ØCollections practice

•Change in Tuesday office hours: 2-3 p.m.
ØUpdated in Canvas site on Calendar

Oct 11, 2021 Sprenkle - CSCI209 48

48

