
10/18/21

1

Objectives
•Exceptions
•Files
•Streams

Oct 13, 2021 Sprenkle - CSCI209 1

1

Review
1. What is an Exception?
2. How do we create Exceptions?
3. How do we advertise that our method may produce an exception?
4. What are the different categories of exceptions?

a) What are examples (i.e., class names) of those categories of exceptions?
5. How do you handle an exception? (In Python, this was called “except”)
6. How do we make a block of code execute regardless of whether some

code threw an exception or not?
7. What is Eclipse? What can it do?

a) Why did I wait until now to show you Eclipse?

Oct 13, 2021 Sprenkle - CSCI209 2

2

10/18/21

2

Eclipse Tradeoffs
• Very helpful – after you know what

you’re doing
Ø You know

• Code is compiled before executed
• Structure of classes
• How to fix errors

• Eclipse can handle the “routine”
for you
Ø That wasn’t “routine” for you a few

weeks ago
Ø Help you focus on the important

design considerations

• Gives suggestions for fixes
Ø You need to think through what the

appropriate fix is
• Sometimes, it’s “I’m not done yet”

Ø Don’t say “Eclipse made me do
<something>”

• Eclipse is a beast (memory hog)
Ø If you have less than ~8GB of

memory, Eclipse will be slow

Oct 13, 2021 Sprenkle - CSCI209 3

3

Eclipse Hints
•After you have written a method, type

before the method, and then hit enter and the
Javadocs comment template will be automatically
generated for you
•Use (command/control)-spacebar for possible

completions
•Use (command/control)-shift-F to format

code
Oct 13, 2021 Sprenkle - CSCI209 4

/**

4

10/18/21

3

Error

Review: Exception Classification

Oct 13, 2021 Sprenkle - CSCI209 5

Throwable

Exception

IOException
RuntimeException

SQLException

Others…

Unch
eck

ed

Unchecked
Ch

ec
ke
d

Checked

Checked: All non-
RuntimeExceptions

Part of java.lang
package

5

Review: Categories of Exceptions
Unchecked
• Any exception that derives from
Error or RuntimeException

• Programmer does not necessarily
create/handle

• Try to prevent them
• Often indicates programmer error

Ø E.g., precondition violations, not
using API correctly

Checked
• Any other exception
• Programmer creates and handles

checked exceptions
• Compiler-enforced checking

Ø Improves reliability*

• For conditions from which caller
can reasonably be expected to
recover

Oct 13, 2021 Sprenkle - CSCI209 6

6

10/18/21

4

Review: Types of Unchecked Exceptions
1.Derived from the class Error

ØAny line of code can generate because it is an internal JVM
error

ØDon’t worry about what to do if this happens
2.Derived from the class RuntimeException

ØIndicates a bug in the program
ØFix the bug
ØExamples: ArrayOutOfBoundsException,
NullPointerException, ClassCastException

Oct 13, 2021 Sprenkle - CSCI209 7

7

Review: Throwing An Exception We Created
1.Create a new object of class
IllegalArgumentException
ØClass derived from RuntimeException

2.throw it
ØMethod ends at this point
ØCalling method handles exception

Oct 13, 2021 Sprenkle - CSCI209 8

if (grade < 0 || grade > 100) {
throw new IllegalArgumentException(

"Grade is not in valid range (0-100)");
}

8

10/18/21

5

Review: try/catch/finally Blocks
• Which statements run if:

1. Neither statement1 nor
statement2 throws an exception
• 1, 2, 5

2. statement1 throws an
EOFException
• 1,3,4,5

3. statement2 throws an
EOFException
• 1,2,3,4,5

4. statement1 throws an
IOException
• 1,5

Oct 13, 2021 Sprenkle - CSCI209 9

try {
statement1;
statement2;

}
catch (EOFException e) {

statement3;
statement4;

}
finally {

statement5;
}

9

What to do with a Caught Exception?
•Print the stack after the exception occurs
ØFor now, printed to console; better: a log file
ØWhat else can we do?

•Generally, two options:
1. Catch the exception and recover from it

• Recovery: reset state; clean up

2. Pass exception up to whoever called it

Oct 13, 2021 Sprenkle - CSCI209 10

10

10/18/21

6

To Throw or Catch?
•Problem: lower-level exception

propagated up to higher-level code
•Example: user enters account

information and gets exception message
“field exceeds allowed length in
database”
ØLost context
ØLower-level detail polluting higher-level API

Oct 13, 2021 Sprenkle - CSCI209 11

Solution: higher-levels should catch lower-level exceptions
and throw them in terms of higher-level abstraction

GUI

DB

…

Exception
here

Handled
here

11

Exception Translation
•Special case:

Exception Chaining
ØWhen higher-level exception needs info from lower-

level exception

Oct 13, 2021 Sprenkle - CSCI209 12

try {
// Call lower-level abstraction

}
catch (LowerLevelException ex) {

// log exception …
throw new HigherLevelException(…);

}

try {
// Call lower-level abstraction

}
catch (LowerLevelException cause) {

// log exception …
throw new HigherLevelException(cause);

}

Most standard
Exceptions have this

constructor

12

10/18/21

7

Guidelines for Exception Translation
•Try to ensure that lower-level APIs succeed
ØEx: verify that your parameters satisfy invariants

•Insulate higher-level from lower-level exceptions
ØHandle in some reasonable way
ØAlways log problem so admin can check

•If can’t do previous two, then use exception
translation

Oct 13, 2021 Sprenkle - CSCI209 13

13

Programming with Exceptions
• Exception handling is slow
• Group relevant code together

ØScope of try/catch block should be small
• Use one big try block instead of

nesting try-catch blocks
ØSpeeds up Exception Handling
ØOtherwise, code gets too messy

• Don't ignore exceptions (e.g., catch
block does nothing)
ØBetter to pass them along to higher calls

Oct 13, 2021 Sprenkle - CSCI209 14

try {
}
catch () {
}
try {
}
catch () {
}

try {
try {
}
catch () {
}

}
catch () {
}

try {
…
…

}
catch () {
}

14

10/18/21

8

Programming with Exceptions
•Typical Scenario: Your code calls a method that

throws a checked exception
ØCode will not compile until you handle the exception

•You have 2 options:
1) Add throws declaration
2) Surround with try/catch

Oct 13, 2021 Sprenkle - CSCI209 15Demo in Eclipse

15

try Block Scope Example

Oct 13, 2021 Sprenkle - CSCI209 16

public void read(BufferedReader in) {
try {

boolean done = false;
while (!done) {

String line=in.readLine();
// above could throw IOException
if (line == null)

done = true;
}

}
catch (IOException ex) {

ex.printStackTrace();
}

}

Only this line can throw the exception.

But all of this code is in try block
Why? My considerations:
• In while loop
• Scope of variables
• Readability of code

16

10/18/21

9

Try/Catch Block Example Alternatives

Oct 13, 2021 Sprenkle - CSCI209 17

public void read(BufferedReader in) {
boolean done = false;
try {
while (!done) {
String line = in.readLine();
if (line == null)
done = true;

}
}
catch (IOException ex) {
ex.printStackTrace();

}
}

public void read(BufferedReader in) {
boolean done = false;
while (!done) {
try {
String line = in.readLine();
if (line == null)
done = true;

}
catch (IOException ex) {
ex.printStackTrace();

}
}

}
Move done initialization outside try

Put try closer to possible offender

17

Summary: Methods Throwing Exceptions
•API documentation tells you if a method can throw

an exception
ØIf so, you must handle it

•If your method could possibly throw an exception
(by generating it or by calling another method that
could), advertise it!
ØIf you can’t handle every error, that’s OK… Let whoever is

calling you worry about it
• They can only handle if you advertise the exceptions you can’t deal

with

Oct 13, 2021 Sprenkle - CSCI209 18

18

10/18/21

10

Creating Custom Exception Class
•Try to reuse an existing exception
ØMatch in name as well as semantics

•If you cannot find a Java Exception class that
describes your condition, implement a new
Exception class

Oct 13, 2021 Sprenkle - CSCI209 19

Skipping next 3 slides in class

19

Discussion: Benefits of Exceptions
•Been talking about details…

•Why does Java have exceptions as part of the
language?

Oct 13, 2021 Sprenkle - CSCI209 23

23

10/18/21

11

Benefits of Exceptions
• Force error checking/handling

ØOtherwise, won’t compile
ØDoes not guarantee “good” exception handling

• Ease debugging
ØStack trace

• Separates error-handling code from “regular” code
ØError code is in catch blocks at end
ØDescriptive messages with exceptions

• Propagate errors up call stack
ØLet whoever “cares” about error handle it

• Group and differentiate error types
Oct 13, 2021 Sprenkle - CSCI209 24

Does NOT mean that error is
prevented at compile time—just
that we can improve robustness

24

FILES

Oct 13, 2021 Sprenkle - CSCI209 25

25

10/18/21

12

java.io.File Class
•Represents a file or directory
•Provides functionality such as
ØStorage of the file on the disk
ØDetermine if a particular file exists
ØWhen file was last modified
ØRename file
ØRemove/delete file
Ø…

Oct 13, 2021 Sprenkle - CSCI209 26

26

Making a File Object
•Simplest constructor takes full file name (including

path)
ØIf don’t supply path, Java assumes current directory (.)

ØCreates a File object representing a file named
“chicken.data” in the current directory

ØDoes not create a file with this name on disk
•Similar to Python:

Oct 13, 2021 Sprenkle - CSCI209 27

File myFile = new File("chicken.data");

myFile = open("chicken.data")

27

10/18/21

13

Files, Directories, and Useful Methods
•A File object can represent a file or a directory
ØDirectories are special files in most modern operating

systems

•Use isDirectory() and/or isFile() for type
of file File object represents

•Use exists() method
ØDetermines if a file exists on the disk

Oct 13, 2021 Sprenkle - CSCI209 28
In Python, functionality are in the os.path module

28

More File Constructors
•String for the path, String for filename

•File for directory, String for filename

Oct 13, 2021 Sprenkle - CSCI209 29

File myFile = new File(
"/csdept/courses/cs209/handouts",
"chicken.data");

File myDir = new File(
"/csdept/courses/cs209/handouts");

File myFile = new File(myDir, "chicken.data");

29

10/18/21

14

“Break” any of Java’s Principles?

Oct 13, 2021 Sprenkle - CSCI209 30

30

“Break” any of Java’s Principles?
•Principle of Portability

ØWrite and Compile Once, Run Anywhere
•Problem: file paths are OS-specific
•java.io.File.separator

ØOSX/Linux: /
ØWindows: \

•Takeaways:
ØUse relative paths
ØUse configuration files to set paths

Oct 13, 2021 Sprenkle - CSCI209 31

31

10/18/21

15

java.io.File Class
•25+ methods
ØManipulate files and directories
ØCreating and removing directories
ØMaking, renaming, and deleting files
ØInformation about file (size, last modified)
ØCreating temporary files
Ø…

•See online API documentation
Oct 13, 2021 Sprenkle - CSCI209 32FileTest.java

32

STREAMS

Oct 13, 2021 Sprenkle - CSCI209 33

33

10/18/21

16

Streams

Oct 13, 2021 Sprenkle - CSCI209 34

input stream: an object from which we can read a sequence of bytes
abstract class: java.io.InputStream

The image part with relationship ID rId3 was not found in
the file.

Java handles input/output using streams,
which are sequences of bytes

34

Streams

Oct 13, 2021 Sprenkle - CSCI209 35

output stream: an object to which we can write a sequence of bytes
abstract class: java.io.OutputStream

Java handles input/output using streams,
which are sequences of bytes

35

10/18/21

17

Java Streams
•MANY (80+) types of Java streams
•In java.io package
•Why stream abstraction?

ØInformation stored in different sources is accessed in
essentially the same way
• Example sources: file, on a web server across the network, string

ØAllows same methods to read or write data, regardless of
its source
• Create an InputStream or OutputStream of the appropriate

type

Oct 13, 2021 Sprenkle - CSCI209 36

36

java.io Classes Overview
•Two categories of stream classes, based on

datatype: Byte, Text
•Abstract base classes for binary data:

•Abstract base classes for text data:

Oct 13, 2021 Sprenkle - CSCI209 37

InputStream OutputStream

Reader Writer

37

10/18/21

18

Byte Streams: For Binary Data

Abstract Base Classes

Oct 13, 2021 Sprenkle - CSCI209 38

Shaded: Read from/write to source
White: Does some processing

In java.io package

38

Character Streams: For Text

Abstract Base Classes

Oct 13, 2021 Sprenkle - CSCI209 39

Shaded: Read from/write to source
White: Does some processing

• In java.io package
• Handle any character in

Unicode set

39

10/18/21

19

Console I/O
•Output:
ØSystem.out is a PrintStream object

•Input
ØSystem.in is an InputStream object
ØThrows exceptions if errors when reading
•Handle in try/catch

Oct 13, 2021 Sprenkle - CSCI209 40

SystemIOStarter.java

40

Opening & Closing Streams
•Streams are automatically opened when

constructed

•Close a stream by calling its close() method
ØClose a stream as soon as object is done with it
ØFree up system resources

Oct 13, 2021 Sprenkle - CSCI209 41

41

10/18/21

20

Reading & Writing Bytes
•Abstract parent class: InputStream

Øabstract int read()
• reads one byte from the stream and returns it

ØConcrete child classes override read() to provide
appropriate functionality
• e.g., FileInputStream’s read() reads one byte from a file

•Similarly, OutputStream class has abstract
write() to write a byte to the stream

Oct 13, 2021 Sprenkle - CSCI209 42

42

File Input and Output Streams
•FileInputStream: provides an input stream

that can read from a file
ØConstructor takes the name of the file:

ØOr, uses a File object …

Oct 13, 2021 Sprenkle - CSCI209 44

FileInputStream fin = new FileInputStream("chicken.data");

File inputFile = new File("chicken.data");
FileInputStream fin = new FileInputStream(inputFile);

FileTest.java
44

10/18/21

21

More Powerful Stream Objects
• DataInputStream

ØReads Java primitive types
through methods such as
readDouble(), readChar(),
readBoolean()

• DataOutputStream
ØWrites Java primitive types with
writeDouble(),
writeChar(),
writeBoolean(), …

Oct 13, 2021 Sprenkle - CSCI209 45

45

Connected Streams

•FileInputStream can read from a file but has no
methods to read numeric types

•DataInputStream can read numeric types but has
no methods to read from a file

•Java allows you to combine two types of streams
into a connected stream
ØFileInputStreamà chocolate
ØDataInputStreamà peanut butter

Oct 13, 2021 Sprenkle - CSCI209 46

Our goal: read numbers from a file

46

10/18/21

22

Connected Streams
• Think of a stream as a pipe
•FileInputStream knows how to read from a file
•DataInputStream knows how to read an InputStream into

useful types
• Connect out end of FileInputStream to in end of
DataInputStream…

Oct 13, 2021 Sprenkle - CSCI209 47

FileInputStream DataInputStream
double

char
file

Data Source stream
Filtered Stream

Reads from a stream

47

Connecting Streams
• If we want to read numbers from a file

ØFileInputStream reads bytes from file
ØDataInputStream handles numeric type reading

• Connect the DataInputStream to the FileInputStream
ØFileInputStream gets the bytes from the file and DataInputStream

reads them as assembled types

Oct 13, 2021 Sprenkle - CSCI209 48

FileInputStream fin = new FileInputStream("chicken.data");
DataInputStream din = new DataInputStream(fin);

double num1 = din.readDouble();
“wrap” fin in din

DataIODemo.java
48

10/18/21

23

Data Source vs. Filtered Streams

Data Source Streams
• Communicate with a data source

Ø file, byte array, network socket, or
URL

Filtered Streams
• Subclasses of
FilterInputStream or
FilterOutputStream

• Always contains/connects to
another stream

• Adds functionality to other stream
Ø Automatically buffered IO
Ø Automatic compression
Ø Automatic encryption
Ø Automatic conversion between

objects and bytes

Oct 13, 2021 Sprenkle - CSCI209 49

49

Another Filtered Stream: Buffered Streams
•BufferedInputStream buffers your input

streams
ØA pipe in the chain that adds bufferingà speeds up

access

Oct 13, 2021 Sprenkle - CSCI209 50

DataInputStream din = new DataInputStream (
new BufferedInputStream (

new FileInputStream("chicken.data")));

FileInputStream
double

char
file BufferedInputStream

Review: What functionality does each stream add?

DataInputStream

50

10/18/21

24

Connected Streams: Similar for Output
•Example: for buffered output to the file and to

write types
ØCreate a FileOutputStream
ØAttach a BufferedOutputStream
ØAttach a DataOutputStream
ØPerform typed writing using methods of the
DataOutputStream object

Oct 13, 2021 Sprenkle - CSCI209 51

Combine different types of streams
to get functionality you want

51

TEXT STREAMS

Oct 13, 2021 Sprenkle - CSCI209 52

52

10/18/21

25

Text Streams
•Previous streams: operate on binary data, not

text
•Java uses Unicode to represent characters/strings

and some operating systems do not
ØNeed something that converts characters from

Unicode to whatever encoding the underlying
operating system uses

ØLuckily, this is mostly hidden from you

Oct 13, 2021 Sprenkle - CSCI209 53

53

Character Streams: For Text

Abstract Base Classes

Oct 13, 2021 Sprenkle - CSCI209 54

Shaded: Read from/write to source
White: Does some processing

• In java.io package
• Handle any character in

Unicode set

54

10/18/21

26

Text Streams
•Derived from Reader and Writer classes
ØReader and Writer generally refer to text I/O

•Example: Make an input reader of type
InputStreamReader that reads from keyboard

Øin reads characters from keyboard and converts
them into Unicode for Java

Oct 13, 2021 Sprenkle - CSCI209 55

InputStreamReader in = new InputStreamReader(System.in);

55

Text Streams and Encodings
•Attach an InputStreamReader to a
FileInputStream

ØAssumes file has been encoded in the default
encoding of underlying OS

•Can specify a different encoding in constructor of
InputStreamReader

Oct 13, 2021 Sprenkle - CSCI209 56

InputStreamReader in = new InputStreamReader(
new FileInputStream("employee.data"));

InputStreamReader in = new InputStreamReader(
new FileInputStream("employee.data"), "UTF-8");

56

10/18/21

27

Convenience Classes
•Reading and writing to text files is common
•FileReader
ØConvenience class combines a InputStreamReader

with a FileInputStream
•Similar for output to text file

is equivalent to

Oct 13, 2021 Sprenkle - CSCI209 57

FileWriter out = new FileWriter("output.txt");

OutputStreamWriter out = new OutputStreamWriter(
new FileOutputStream("output.txt"));

57

PrintWriter
•Easiest writer to use for writing text output
•Has methods for printing various data types
Øsimilar to a DataOutputStream, PrintStream

•Methods: print, printf and println
ØSimilar to System.out (a PrintStream) to display

strings

Oct 13, 2021 Sprenkle - CSCI209 58

58

10/18/21

28

PrintWriter Example

Oct 13, 2021 Sprenkle - CSCI209 59

PrintWriter out = new PrintWriter("output.txt");

String myName = "Homer Simpson";
double mySalary = 35700;

out.print(myName);
out.print(" makes ");
out.print(salary);
out.println(" per year.");

or
out.println(myName + " makes " + salary +

" per year.");

File to write to

59

Review: Formatted Output
•printf or format

Oct 13, 2021 Sprenkle - CSCI209 60

double f1=3.14159, f2=1.45, total=9.43;
// simple formatting...
System.out.printf("%6.5f and %5.2f", f1, f2);
// getting fancy (%n = \n or \r\n)...
System.out.printf("%-6s%5.2f%\n", "Tax:", total);

60

10/18/21

29

Reading Text from a Stream: BufferedReader
•There is no PrintReader class
•Constructor requires a Reader object

•Read file, line-by-line using readLine()
ØReads in a line of text and returns it as a String
ØReturns null when no more input is available

Oct 13, 2021 Sprenkle - CSCI209 62

String line;
while ((line = in.readLine()) != null) {

// process the line
}

BufferedReader in = new BufferedReader(new FileReader("myfile.txt"));

62

Reading Text from a Stream
•You can attach a BufferedReader to an
InputStreamReader:

•Used to be the best way to read from the console
Oct 13, 2021 Sprenkle - CSCI209 63

BufferedReader consoleReader= new BufferedReader(
new InputStreamReader(System.in));

BufferedReader webpageReader = new BufferedReader(
new InputStreamReader(url.openStream());

Note how easy it is to read from different sources

63

10/18/21

30

Looking Ahead: Assignment 6
•Eclipse practice
•Javadocs
ØSee what the web pages look like from your

comments!

Oct 13, 2021 Sprenkle - CSCI209 64

64

