
10/18/21

1

Objectives
•Streams
•Standard Error
•Java wrap up
ØJar files
ØClasspath
ØCompiling

Oct 18, 2021 Sprenkle - CSCI209 1

1

Review
1.What are the different categories of exceptions?

a)What are examples (i.e., class names) of those
categories of exceptions?

2.If your code calls a method that can throw an
exception, how can you handle it?

3.What is a stream?
4.What are 3 different ways to categorize Java

stream classes?
Oct 18, 2021 Sprenkle - CSCI209 2

2

10/18/21

2

Fun Fact: Python also has finally

Oct 18, 2021 Sprenkle - CSCI209 3

def divide(x, y):
try:

result = x / y
except ZeroDivisionError:

print("division by zero!")
else:

print("result is", result)
finally:

print("executing finally clause")

https://docs.python.org/3/tutorial/errors.html

3

Fun Fact: Python also has finally

Oct 18, 2021 Sprenkle - CSCI209 4

def divide(x, y):
try:

result = x / y
except ZeroDivisionError:

print("division by zero!")
else:

print("result is", result)
finally:

print("executing finally clause")

https://docs.python.org/3/tutorial/errors.html

>>> divide(2, 1)
result is 2.0
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in divide
TypeError: unsupported operand
type(s) for /: 'str' and 'str'

4

10/18/21

3

Review: Streams

Oct 18, 2021 Sprenkle - CSCI209 5

input stream: an object from which we can read a sequence of bytes
abstract class: java.io.InputStream

Java handles input/output using streams,
which are sequences of bytes

5

Review: Streams

Oct 18, 2021 Sprenkle - CSCI209 6

output stream: an object to which we can write a sequence of bytes
abstract class: java.io.OutputStream

Java handles input/output using streams,
which are sequences of bytes

6

10/18/21

4

Byte Streams: For Binary Data

Abstract Base Classes

Oct 18, 2021 Sprenkle - CSCI209 7

Shaded: Read from/write to source
White: Does some processing

In java.io package

7

Character Streams: For Text

Abstract Base Classes

Oct 18, 2021 Sprenkle - CSCI209 8

Shaded: Read from/write to source
White: Does some processing

• In java.io package
• Handle any character in

Unicode set

8

10/18/21

5

Reading Text from a Stream: BufferedReader
•There is no PrintReader class
•Constructor requires a Reader object

•Read file, line-by-line using readLine()
ØReads in a line of text and returns it as a String
ØReturns null when no more input is available

Oct 18, 2021 Sprenkle - CSCI209 9

String line;
while ((line = in.readLine()) != null) {

// process the line
}

BufferedReader in = new BufferedReader(new FileReader("myfile.txt"));

9

Reading Text from a Stream
•You can attach a BufferedReader to an
InputStreamReader:

•Used to be the best way to read from the console
Oct 18, 2021 Sprenkle - CSCI209 10

BufferedReader consoleReader= new BufferedReader(
new InputStreamReader(System.in));

BufferedReader webpageReader = new BufferedReader(
new InputStreamReader(url.openStream());

Note how easy it is to read from different sources

10

10/18/21

6

Scanners
•Scanners do not throw IOExceptions!

ØFor a simple console program, main() does not have to
deal with or throw IOExceptions

ØHandling those [checked] exceptions is required with
BufferedReader/InputStreamReader combination

•Throws InputMismatchException when token
doesn’t match pattern for expected type
Øe.g., nextLong() called with next token “AAA”
ØNo catching required

Oct 18, 2021 Sprenkle - CSCI209 11

Meaning it is what type of exception?
How do you prevent errors in Scanner?

11

Scanners
•Scanners do not throw IOExceptions!

ØFor a simple console program, main() does not have to
deal with or throw IOExceptions

ØHandling those [checked] exceptions is required with
BufferedReader/InputStreamReader combination

•Throws InputMismatchException when token
doesn’t match pattern for expected type
Øe.g., nextLong() called with next token “AAA”
ØRuntimeException (no catching required)

Oct 18, 2021 Sprenkle - CSCI209 12How do you prevent such errors?

12

10/18/21

7

Summary: Streams
•Abstraction: streams – sequences of data
•Two categories of classes based on type of data they

handle
ØBytes: InputStream OutputStream
ØText: Reader Writer

•Two categories of classes based on their source
ØData Source (primary source)
ØFiltered (another stream)

Oct 18, 2021 Sprenkle - CSCI209 14

14

Summary: Using Streams
•Can combine streams to get the custom functionality

you want
ØConvenience classes for some common combinations

•Development decisions: What do I want this stream
to do?
ØWhat kind of data is it dealing with?
ØWhat filtering/functionality do I want?

•Select the streams that provide that functionality
and connect them (or use convenience class)

Oct 18, 2021 Sprenkle - CSCI209 15

15

10/18/21

8

Discussion: Stream Design Decisions
•Java’s Streams
ØCombine different types of streams to get

functionality you want
ØProvide convenience classes for common functionality

Oct 18, 2021 Sprenkle - CSCI209 16

What are the tradeoffs for this design decision?
• What would the alternatives be?
• Consider if you maintained the Java libraries
• Consider as a user of those Java libraries

16

Discussion: Stream Design Decisions

•Alternative: Creating a class for every combination
would result in even more classes and a lot of
redundant code
ØConsider what is required if some functionality must be

updated
ØTricky for user to pull together various streams BUT also

would be hard to find the class you want that has the right
combination of functionality

Oct 18, 2021 Sprenkle - CSCI209 17

Combine different types of streams
to get functionality you want

17

10/18/21

9

STANDARD ERROR

Oct 18, 2021 Sprenkle - CSCI209 18

18

Standard Streams
•Preconnected streams
ØStandard Out: stdout
ØStandard In: stdin
ØStandard Error: stderr
•For error messages and diagnostics
• In Java: System.err

Oct 18, 2021 Sprenkle - CSCI209 19

Benefits of two output streams (out and err)?

19

10/18/21

10

Standard Streams
• Preconnected streams

ØStandard Out: stdout
ØStandard In: stdin
ØStandard Error: stderr

• For error messages and diagnostics
• In Java: System.err

• Helpful to separate output vs error messages
ØCan save outputs in two different files, e.g., error.log vs

output.log
ØEclipse (and other IDEs) differentiates between output (black

text) and error (red text)
Oct 18, 2021 Sprenkle - CSCI209 20

20

Standard Streams
•Documentation for Python’s print function:

•file parameter says where to direct output
ØDefault is to standard out

Oct 18, 2021 Sprenkle - CSCI209 21

print(...)
print(value, ..., sep=' ', end='\n’,

file=sys.stdout, flush=False)

How could you print to standard error?

21

10/18/21

11

Standard Streams
•Documentation for Python’s print function:

•file parameter says where to direct output

Oct 18, 2021 Sprenkle - CSCI209 22

print(...)
print(value, ..., sep=' ', end='\n’,

file=sys.stdout, flush=False)

import sys
print("Hello!")
print("Error Hello!", file=sys.stderr)

22

Redirecting Output
•Recall earlier this semester

ØRedirected stdout to debugged.out
Østderr would still go to terminal

•To redirect stderr to same file as well

Oct 18, 2021 Sprenkle - CSCI209 23

$ java Assign1 > debugged.out

$ java Assign1 1> debugged.out 2>&1

StandardStreamsExample.java

23

10/18/21

12

JAR FILES

Oct 18, 2021 Sprenkle - CSCI209 24

24

Jar (Java Archive) Files
•Archives of Java files
•Package code into a neat bundle to distribute

ØEasier, faster to download
ØEasier for others to use

•jar command: create, view, and extract Jar files
ØWorks similarly to tar

•Run it using java

Oct 18, 2021 Sprenkle - CSCI209 25

jar cf myapplication.jar *.class

java -jar myapplication.jar

25

10/18/21

13

Jar/Tar Commands
•Common options:

•Common use:
Ø jar cfz code.jar.gz class_files_directory
Ø jar xfz code.jar.gz

Oct 18, 2021 Sprenkle - CSCI209 26

Option/
Operations Meaning

f The name of the archive file

c Create an archive file

x Extract the archive file

v Verbose

z Zip (compress)

t Table of contents (list contents)

26

Jar file: Metadata
•Jar file includes a special metadata file with the

path META-INF/MANIFEST.MF
ØSay how Jar file is used
Øjar creates a default metadata file, if not specified

Oct 18, 2021 Sprenkle - CSCI209 27

27

10/18/21

14

Jar file: Metadata
•Example metadata file that allows you to execute

the JAR with java

•To create the jar file:
jar cmf myManifest myapplication.jar *.class

•Run it using java
java -jar myapplication.jar

Oct 18, 2021 Sprenkle - CSCI209 28

Specifying the metadata file

Manifest-Version: 1.0
Main-Class: MyApplication

Note the newline

28

Creating Jar Files in Eclipse
•Export à Java à Jar file
ØOptions to create a MANIFEST.MF file
ØOptions to include source files or only class files

Oct 18, 2021 Sprenkle - CSCI209 29

29

10/18/21

15

Typical Scenario with Jar Files
•“I want to use this third-party (not part of Java

library) library in my code”
•You have a jar file of the code
•And then you add the jar file to your classpath

Oct 18, 2021 Sprenkle - CSCI209 30

30

CLASSPATH

Oct 18, 2021 Sprenkle - CSCI209 31

31

10/18/21

16

Classpath
•Tells the compiler or JVM where to look for user-

defined classes and packages (jar files)
ØOften when using third-party libraries

•Similar to PYTHONPATH
•Typically know it needs to be set when there are

“Class not found” error messages in your code
but you have the appropriate import

Oct 18, 2021 Sprenkle - CSCI209 32

32

Setting the Classpath
• Can specify classpath in command line

• Can specify the classpath environment variable
ØEdit your .bash_profile OR
ØSet in terminal

• In Eclipse, you can “Configure Build Path” for a project
Oct 18, 2021 Sprenkle - CSCI209 33

javac -cp path/to/myjavaclasses MyClass.java
java –cp path/to/myjavaclasses MyClass

CLASSPATH=$CLASSPATH:path/to/myjavaclasses
echo $CLASSPATH Current value of CLASSPATH

Can be .class files or jar files

33

10/18/21

17

COMPILATION

Oct 18, 2021 Sprenkle - CSCI209 34

34

Review
•How is compiling different from interpreting?
ØWhat does the compiler do?

Oct 18, 2021 Sprenkle - CSCI209 35

35

10/18/21

18

Compiling
• Translates high-level programming language to machine code or byte

code
Ø Java: .java à .class == bytecode
Ø Holistic view of the program

• Compiler optimization techniques
Ø Generate efficient bytecode/machine code
Ø Examples: get rid of unused local variables, transform loops, inline method

calls
Ø In Java: static typing for additional gains

• Can execute generated code multiple times
Ø Performance gain
Ø Interpreted à have to re-verify the code each time executed

Oct 18, 2021 Sprenkle - CSCI209 36

36

Summary:
Compiled vs Interpreted Languages

Compiled
- Spends a lot of time analyzing and

processing the program
• Resulting executable is some form

of machine- specific binary code
• Computer hardware interprets

(executes) resulting code
üProgram execution is fast

Ø Efficient machine/byte code
generation

Ø Performance gains

Interpreted
üRelatively little time spent analyzing

and processing the program
• Resulting code is some sort of

intermediate code
• Another program interprets

resulting code
- Program execution is relatively slow
üFaster development/prototyping

Oct 18, 2021 Sprenkle - CSCI209 37

In pure forms

37

10/18/21

19

Python Interpreter
1. Validates Python programming language expression(s)

• Enforces Python syntax rules
• Reports syntax errors

2. Executes expression(s)

Oct 18, 2021 Sprenkle - CSCI209 38

Interpreter
(python)

Python
expression

Output Executable
bytecode

Only if no syntax errors

(not pure interpreting)

Caches compiled byte code
in __pycache__

38

Compiler
(javac)

Java Compiler

•Lexical analysis, parsing, semantic analysis, code
generation, and code optimization

•Code optimization: dead code eliminator, inline
expansion, constant propagation, …

Oct 18, 2021 Sprenkle - CSCI209 39

Java
file

Java
class

Source code Executable code

39

10/18/21

20

Compiler Optimization Examples*
•What is the optimization?
ØHow does it make the code more efficient?

•For each optimization, should you do these
optimizations yourself? Or, is it something that
only the compiler should do?

Oct 18, 2021 Sprenkle - CSCI209 40

*Not literally what the code optimizations look like
• Not in Java code but in byte code

40

Compiler Optimization Examples

Oct 18, 2021 Sprenkle - CSCI209 41

for(int i = 0; i < 10; i++) {
int j = 10;
System.out.println(i + ", " + j);

}

int j = 10;
for(int i = 0; i < 10; i++) {

System.out.println(i + ", " + j);
}

for(int i = 0; i < 10; i++) {
System.out.println(i + ", " + 10);

}

Original:

Optimization 1

Optimization 2

41

10/18/21

21

Compiler Optimization Examples

Oct 18, 2021 Sprenkle - CSCI209 42

for(int i = 0; i < 10; i++) {
if(i == 0) {

System.out.println("Do this");
}
else {

System.out.println("Do that");
}

}
System.out.println("Do this");

for(int i = 1; i < 10; i++) {
System.out.println("Do that");

}
System.out.println("Do this");
System.out.println("Do that");
System.out.println("Do that");
System.out.println("Do that");
…

Original:

Optimization 1

Optimization 2

42

Compiler Optimization Examples

Oct 18, 2021 Sprenkle - CSCI209 43

public void f(int i) {
a[0] = i + 0;
a[1] = i * 0;
a[2] = i - i;
a[3] = 1 + i + 1;

}

public void f(int i) {
a[0] = i;
a[1] = 0;
a[2] = 0;
a[3] = i + 2;

}

Original:

Optimization 1

43

10/18/21

22

Compiler Optimization Examples

Oct 18, 2021 Sprenkle - CSCI209 44

int add(int x, int y) {
return x + y;

}

int sub(int x, int y) {
return add(x, -y);

}
int sub(int x, int y) {

return x + -y;
}

int sub(int x, int y) {
return x - y;

}

Original:

Optimization 1

Optimization 2

add method stays the same

44

Compiler Tradeoffs
•Upfront costs
ØSearching for optimizations
ØMake optimizations
•Typically not Big-O efficiency improvements (unless program

is written really inefficiently)

•Improved runtime
ØExpect executed many more times than compiled

Oct 18, 2021 Sprenkle - CSCI209 45

45

10/18/21

23

Looking Ahead
•Tomorrow night: Assignment 6

Oct 18, 2021 Sprenkle - CSCI209 46

46

