
11/11/21

1

Objectives
•Compiler Optimizations
•Java vs Python
•Software Development

Oct 20, 2021 Sprenkle - CSCI209 1

1

Review
1. What are 3 different ways to categorize Java stream classes?
2. Java provides a bunch of classes that we can combine to get

the functionality we want. What are the tradeoffs of that
design decision?

3. What are the 3 standard streams? (not Java-specific)
Ø How do we refer to those streams in Java?

4. How can we package our Java code for easy distribution?
5. How do we tell Java where to look for classes we want to use

in our code?
6. What is compiling vs interpreting?

Ø What are examples of compiler optimizations?
Oct 20, 2021 Sprenkle - CSCI209 2

2

11/11/21

2

Review: Stream Categories
1.Categorize based on flow of stream

1. Input
2. Output

2.Categorize based on type of data they handle
1. Bytes: InputStream OutputStream
2. Text: Reader Writer

3.Categorize based on their source
1. Data Source (primary source)
2. Filtered (another stream)

Oct 20, 2021 Sprenkle - CSCI209 3

3

Review: Stream Design Decisions

•Alternative: Creating a class for every combination
would result in even more classes and a lot of
redundant code
ØConsider what is required if some functionality must be

updated
ØTricky for user to pull together various streams BUT also

would be hard to find the class you want that has the right
combination of functionality

Oct 20, 2021 Sprenkle - CSCI209 4

Combine different types of streams
to get functionality you want

4

11/11/21

3

Review: Standard Streams
• Preconnected streams

ØStandard Out: stdout
ØStandard In: stdin
ØStandard Error: stderr

• For error messages and diagnostics
• In Java: System.err

•Benefit: separate output vs error messages
ØCan save outputs in two different files, e.g., error.log vs

output.log
ØEclipse (and other IDEs) differentiates between output (black

text) and error (red text)
Oct 20, 2021 Sprenkle - CSCI209 5

5

Review: Jar (Java Archive) Files
•Archives of Java files
•Package code into a neat bundle to distribute

ØEasier, faster to download
ØEasier for others to use

•jar command: create, view, and extract Jar files
ØWorks similarly to tar

•Run it using java

Oct 20, 2021 Sprenkle - CSCI209 6

jar cf myapplication.jar *.class

java -jar myapplication.jar

6

11/11/21

4

Review: Classpath
•Tells the compiler or JVM where to look for user-

defined classes and packages (jar files)
ØOften when using third-party libraries

•Similar to PYTHONPATH
•Typically know it needs to be set when there are

“Class not found” error messages in your code
but you have the appropriate import

Oct 20, 2021 Sprenkle - CSCI209 7

7

Review:
Compiled vs Interpreted Languages

Compiled
- Spends a lot of time analyzing and

processing the program
• Resulting executable is some form

of machine- specific binary code
• Computer hardware interprets

(executes) resulting code
üProgram execution is fast

Ø Efficient machine/byte code
generation

Ø Performance gains

Interpreted
ü Relatively little time spent analyzing

and processing the program
• Resulting code is some sort of

intermediate code
• Another program interprets

resulting code
- Program execution is relatively slow
üFaster development/prototyping

Oct 20, 2021 Sprenkle - CSCI209 8

In pure forms

8

11/11/21

5

Compiler Optimization Examples*
•What is the optimization?
ØHow does it make the code more efficient?

•For each optimization
ØShould you transform the code yourself to do that

optimization?
ØOr, is it something that only the compiler should do?

Oct 20, 2021 Sprenkle - CSCI209 9

*Not literally what the code optimizations look like
• Not in Java code but in byte code
• CSCI210 may help illuminate why these decrease runtime

9

Compiler Optimization Examples

Oct 20, 2021 Sprenkle - CSCI209 10

for(int i = 0; i < 10; i++) {
int j = 10;
System.out.println(i + ", " + j);

}

int j = 10;
for(int i = 0; i < 10; i++) {

System.out.println(i + ", " + j);
}

for(int i = 0; i < 10; i++) {
System.out.println(i + ", " + 10);

}

Original:

Optimization 1

Optimization 2

10

11/11/21

6

Compiler Optimization Examples

Oct 20, 2021 Sprenkle - CSCI209 11

for(int i = 0; i < 10; i++) {
if(i == 0) {

System.out.println("Do this");
}
else {

System.out.println("Do that");
}

}
System.out.println("Do this");

for(int i = 1; i < 10; i++) {
System.out.println("Do that");

}
System.out.println("Do this");
System.out.println("Do that");
System.out.println("Do that");
System.out.println("Do that");
…

Original:

Optimization 1

Optimization 2

11

Compiler Optimization Examples

Oct 20, 2021 Sprenkle - CSCI209 12

public void f(int i) {
a[0] = i + 0;
a[1] = i * 0;
a[2] = i - i;
a[3] = 1 + i + 1;

}

public void f(int i) {
a[0] = i;
a[1] = 0;
a[2] = 0;
a[3] = i + 2;

}

Original:

Optimization 1

12

11/11/21

7

Compiler Optimization Examples

Oct 20, 2021 Sprenkle - CSCI209 13

public void f(int i) {
a[0] = i + 0;
a[1] = i * 0;
a[2] = i - i;
a[3] = 1 + i + 1;

}

public void f(int i) {
a[0] = i;
a[1] = 0;
a[2] = 0;
a[3] = i + 2;

}

Original:

Optimization 1

• Why is the code written like this?
It seems silly!

• Likely after some previous
optimizations
• Ex: know variable is a constant

13

Compiler Optimization Examples

Oct 20, 2021 Sprenkle - CSCI209 14

int add(int x, int y) {
return x + y;

}

int sub(int x, int y) {
return add(x, -y);

}
int sub(int x, int y) {

return x + -y;
}

int sub(int x, int y) {
return x - y;

}

Original:

Optimization 1

Optimization 2

add method stays the same

14

11/11/21

8

Compiler Optimization Examples

Oct 20, 2021 Sprenkle - CSCI209 15

class Parent {
void final f() {

System.out.println("f");
}

}
for(Parent p : parentArray) {

p.f(); // check p’s actual type at runtime
// and execute its method f

}

for(Parent p : parentArray) {
System.out.println("f");

}

Optimization:

15

Compiler Tradeoffs
•Upfront costs
ØSearching for optimizations
ØMake optimizations
•Typically not Big-O efficiency improvements (unless program

is written really inefficient)

•Improved runtime
ØExpect executed many more times than compiled

Oct 20, 2021 Sprenkle - CSCI209 16

16

11/11/21

9

Should You Apply the Optimization?
•Your priority: keeping code abstract to make it

easier to change
•If you can apply the optimization without making

the code harder to change, you should do it

Oct 20, 2021 Sprenkle - CSCI209 17

17

LANGUAGE COMPARISON

Oct 20, 2021 Sprenkle - CSCI209 18

18

11/11/21

10

Language Comparison
Java Python

Oct 20, 2021 Sprenkle - CSCI209 19

1) Focus on their characteristics (just the facts, not tradeoffs)
2) Pros and cons, preferences

19

Language Comparison
Java
• Entirely Object-oriented*

Ø Procedural
Ø Functional - newer

• Statically, strongly typed
• Compiled

Python
• Object-oriented

Ø Also procedural and functional
programming

• Dynamically, strongly typed
• Interpreted

Oct 20, 2021 Sprenkle - CSCI209 20

Pros and cons of using each?

20

11/11/21

11

Rest of the semester
• Shift from learning Java, specifically, to learning how to

develop software (abstractly) with Java as our
implementation/example

• Why Java?
ØPopular language
ØMany frameworks and tools for Java
ØJava’s structure allows for strict adherence to design

techniques
• Just a start on Java

ØYou’ll need to continue learning more Java on your own

Oct 20, 2021 Sprenkle - CSCI209 21

21

SOFTWARE DEVELOPMENT

“There is no single development, in either technology or in management technique, that by itself
promises even one order-of-magnitude improvement in productivity, in reliability, in simplicity.”
– Fred Brooks

Oct 20, 2021 Sprenkle - CSCI209 22

22

11/11/21

12

Traditional Software Engineering Process:
Waterfall Model

Oct 20, 2021 Sprenkle - CSCI209 25

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

Validate at each step
Goal: A stage is 100% complete
before moving to next step

25

Feedback in Waterfall Model

Oct 20, 2021 Sprenkle - CSCI209 26

• Get feedback at each stage
and revisit previous stage if necessary

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

26

11/11/21

13

Feedback in Waterfall Model

Oct 20, 2021 Sprenkle - CSCI209 27

• Problems may be revealed
in later stages
• What happens if problems aren’t revealed

until Acceptance?

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

27

Iterative Design

Oct 20, 2021 Sprenkle - CSCI209 28

Design

Evaluate Implement
Get feedback/requirements
from users/clients

Goals: Frequent feedback
àIdentify problems early
àHigher quality product

28

11/11/21

14

Spiral Model
• Idea: smaller prototypes to

test/fix/throw away
Ø Finding problems early costs less

• In general…
Ø Break functionality into smaller

pieces
Ø Implement most depended-on or

highest-priority features first

Oct 20, 2021 Sprenkle - CSCI209 29

Design

ImplementEvaluate

Prototypes

Radial dimension: cost
[Boehm 86]

29

Prototypes Overview
•Sample of application
ØOften: Demonstrate one part/purpose
•Focus on one thing, not the whole thing

•Purpose/Dimensions
ØFunctionality
ØInteraction
ØImplementation

Oct 20, 2021 Sprenkle - CSCI209 30

30

11/11/21

15

Prototypes: Fidelity
•How similar to finished product
•Low fidelity: omits details
•High fidelity: closer to

finished project
•Multi-dimensional

ØBreadth: % of features covered
• Low-breadth: Only enough features for certain tasks

ØDepth: degree of functionality
• Low-depth: Limited choices, canned responses, no error handling

Oct 20, 2021 Sprenkle - CSCI209 31

From Nielsen,
Usability Engineering

31

Low Fidelity Prototypes
•Media: Paper, White

board
•Examples: storyboard,

sketches, flipbook,
flow diagram

Oct 20, 2021 Sprenkle - CSCI209 32

32

11/11/21

16

High Fidelity Prototypes
•Media: HTML (non-interactive), PowerPoint,

Video
•Examples: Mockups,

Wizard of Oz

Oct 20, 2021 Sprenkle - CSCI209 33

Virtual Peer for Autistic Children

http://articulab.hcii.cs.cmu.edu/

33

Comparing Low-Fidelity and High-Fidelity
Prototypes

Oct 20, 2021 Sprenkle - CSCI209 34

How do they differ in the kinds of things
you can test and get feedback about?

34

11/11/21

17

Summary: Spiral Model/Iterative Design Model
Benefits
•Builds in getting feedback from client

ØDemo prototypes or working versions of
[parts of] application

ØClients’ requirements may change
ØClients’ requirements may be ambiguous or were

misinterpreted
•Makes project development more agile

ØGoal: find problems early
ØEasier to throw away cheaper early prototypes
ØAdjust/adapt to changes

Oct 20, 2021 Sprenkle - CSCI209 35

Design

ImplementEvaluate
Pro
tot
yp
es

35

Looking Ahead
•Read slides about testing, JUnit before Friday’s

class
ØCanvas quiz

•Goal: Hands-on lab in class on Friday
•Thursday – cancel office hours; email me with

questions or to make an appointment

Oct 20, 2021 Sprenkle - CSCI209 36

36

