
10/22/21

1

Objectives
•Software Development
•Testing
•Collaboration

Oct 22, 2021 Sprenkle - CSCI209 1

1

Review
1. What are differences between compiled and interpreted

languages?
Ø What are the tradeoffs in compiling?

2. Compare and contrast Java and Python
Ø Characteristics
Ø Benefits of each

3. True or False. If the compiler is finding/applying optimizations
to your code, you are writing your code poorly.

4. What are two models of the software development process?
Ø What are their benefits? Limitations?

5. What are prototypes?
Oct 22, 2021 Sprenkle - CSCI209 2

2

10/22/21

2

Review:
Compiled vs Interpreted Languages

Compiled
- Spends a lot of time analyzing and

processing the program
• Resulting executable is some form

of machine- specific binary code
• Computer hardware interprets

(executes) resulting code
üProgram execution is fast

Ø Efficient machine/byte code
generation

Ø Performance gains

Interpreted
ü Relatively little time spent analyzing

and processing the program
• Resulting code is some sort of

intermediate code
• Another program interprets

resulting code
- Program execution is relatively slow
üFaster development/prototyping

Oct 22, 2021 Sprenkle - CSCI209 3

In pure forms

3

Review: Compiler Tradeoffs
•Upfront costs
ØSearching for optimizations
ØMake optimizations
•Typically not Big-O efficiency improvements (unless program

is really inefficient)

•Improved runtime
ØExpect executed many more times than compiled

Oct 22, 2021 Sprenkle - CSCI209 4

4

10/22/21

3

Review: Should You Apply the Optimization?
•Your priority: keeping code abstract to make it

easier to change
•If you can apply the optimization without making

the code harder to change, you should do it

Oct 22, 2021 Sprenkle - CSCI209 5

5

Review: Language Comparison
Java
• Entirely Object-oriented*

Ø Functional programming mimicked
through using just static methods
within a class

• Statically, strongly typed
• Compiled

Python
• Object-oriented

Ø Also functional programming

• Dynamically, strongly typed
• Interpreted

Oct 22, 2021 Sprenkle - CSCI209 6

6

10/22/21

4

Review: Waterfall Model

Oct 22, 2021 Sprenkle - CSCI209 7

• 100% completion before
moving on to next phase
• Problems may be revealed

in later stages
• What happens if problems aren’t revealed

until Acceptance?

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

7

Review: Spiral Model
• Idea: smaller prototypes to

test/fix/throw away
Ø Finding problems early costs less

• In general…
Ø Break functionality into smaller

pieces
Ø Implement most depended-on or

highest-priority features first

Oct 22, 2021 Sprenkle - CSCI209 8

Design

ImplementEvaluate

Prototypes

Radial dimension: cost
[Boehm 86]

8

10/22/21

5

Prototypes: Fidelity
•How similar to finished product
•Low fidelity: omits details
•High fidelity: closer to

finished project
•Multi-dimensional

ØBreadth: % of features covered
• Low-breadth: Only enough features for certain tasks

ØDepth: degree of functionality
• Low-depth: Limited choices, canned responses, no error handling

Oct 22, 2021 Sprenkle - CSCI209 9

From Nielsen,
Usability Engineering

9

Low Fidelity Prototypes
•Media: Paper, White

board
•Examples: storyboard,

sketches, flipbook,
flow diagram

Oct 22, 2021 Sprenkle - CSCI209 10

10

10/22/21

6

High Fidelity Prototypes
•Media: HTML (non-interactive), PowerPoint,

Video
•Examples: Mockups,

Wizard of Oz

Oct 22, 2021 Sprenkle - CSCI209 11

Virtual Peer for Autistic Children

http://articulab.hcii.cs.cmu.edu/

11

Comparing Low-Fidelity and High-Fidelity
Prototypes

Oct 22, 2021 Sprenkle - CSCI209 12

How do they differ in the kinds of things
you can test and get feedback about?

12

10/22/21

7

Summary: Spiral Model/Iterative Design
Model Benefits
•Builds in getting feedback from client

ØDemo prototypes or working versions of
[parts of] application

ØClients’ requirements may change
ØClients’ requirements may be ambiguous or were

misinterpreted
•Makes project development more agile

ØGoal: find problems early
ØEasier to throw away cheaper early prototypes
ØAdjust/adapt to changes

Oct 22, 2021 Sprenkle - CSCI209 13

Design

ImplementEvaluate
Pro
tot
yp
es

13

How to Implement an Effective Solution
1. Understand the problem
2. Understand external constraints
3. Design an effective solution to the problem
4. While designing the solution, design some tests to

verify that the problem is solved (and remains
solved)

5. Code the effective solution to the problem
6. Teach other team members about your solution to

the problem
Oct 22, 2021 Sprenkle - CSCI209 14

14

10/22/21

8

How to Implement an Effective Solution
1. Understand the problem (interact with people)
2. Understand external constraints (interact with people)
3. Design an effective solution to the problem
4. While designing the solution, design some tests to verify

that the problem is solved (and remains solved)
5. Code the effective solution to the problem
6. Teach other team members about your solution to the

problem (interact with people)

Oct 22, 2021 Sprenkle - CSCI209 15

15

Agile Development: Breaking Down Further
•Project’s development

process: Spiral Model
•What does this look like

day to day?
ØAgile development is a

common implementation

Oct 22, 2021 Sprenkle - CSCI209 16

Design

ImplementEvaluate

Prototypes

Radial dimension: cost
[Boehm 86]

16

10/22/21

9

Iterative Development Steps
1. Design a {method, class, package}
2. Implement the {method, class, package}
3. Test the {method, class, package}
4. Fix the {method, class, package}
5. Deploy the {method, class, package}
6. Get feedback – from team lead or customer

ØProbably will require modifications to design
ØMay even need to rollback a previous version

7. Repeat, building up

Oct 22, 2021 Sprenkle - CSCI209 17

Design

ImplementEvaluate

17

Agile Development Framework: Scrum
• Product owner creates prioritized wish list: a product backlog
• Team works in a sprint, usually 2-4 weeks

ØDuring planning, team picks a subset of wish list, a sprint backlog,
and decides how to implement those pieces

ØDaily Scrum: team meets daily to assess its progress
• ScrumMaster keeps the team focused on its goal

ØAt end of sprint, work should be potentially shippable:
• ready to hand to a customer, put on a store shelf, or show to a stakeholder

ØThe sprint ends with a sprint review and retrospective
• Repeat sprint

Oct 22, 2021 Sprenkle - CSCI209 18

https://www.scrumalliance.org/why-scrum

18

10/22/21

10

Tools to Help: Kanban Board

Oct 22, 2021 Sprenkle - CSCI209 19https://www.digite.com/kanban/what-is-kanban/

• Kanban is
continuous, fluid.
• Focus on short

start to finish time

19

Summary: Agile Development Processes
•Goal: Effective software development
ØPlanning with frequent feedback
ØIterative, continuous improvement

•Involves teams, frequent communication
ØTeams: development, quality & assurance, …

•Lots of variations – often company- or team-
specific

Oct 22, 2021 Sprenkle - CSCI209 20

20

10/22/21

11

SOFTWARE TESTING PROCESS

Oct 22, 2021 Sprenkle - CSCI209 21

21

A Bad Role Model

Oct 22, 2021 Sprenkle - CSCI209 22http://imgur.com/HBSbn

22

10/22/21

12

Microsoft Testing
•Beyond their internal testing …
Ø5 million people beta tested
Ø60+ years of performance testing
Ø1 Billion+ Office 2007 sessions

•Still, users found correctness, stability,
robustness, and security bugs

Oct 22, 2021 Sprenkle - CSCI209 23

23

Type 1 Bugs: Compile-Time
•Syntax errors

ØMissing semicolon,
parentheses

•Compiler notifies of error
•Cheap, easy to fix

Oct 22, 2021 Sprenkle - CSCI209 24

24

10/22/21

13

Type 2 Bugs: Run-Time
•Usually logic errors
•Expensive to locate, fix

Oct 22, 2021 Sprenkle - CSCI209 25

25

Aside: Objections to “Bug” Terminology
• “Bug”

Ø Sounds like it’s just an annoyance
• Can simply swat away

Ø Minimizes potential problems
Ø Hides programmer’s

responsibility

• Alternative terms
ØDefect
Ø Fault

Oct 22, 2021 Sprenkle - CSCI209 26

26

10/22/21

14

Types of Testing
(Non-Exhaustive)

•Black-box testing

•White-box testing

•Non-functional testing

•Acceptance testing

Oct 22, 2021 Sprenkle - CSCI209 27

Ideas about or definitions of any of these?

27

Types of Testing
(Non-Exhaustive)
• Black-box testing

Ø Test functionality (e.g., the
calculator)

Ø No knowledge of the code
Ø Examples of testing: boundary

values

• White-box testing
Ø Have access to code
ØGoal: execute all code

• Non-functional testing
Ø Performance testing
Ø Usability testing (HCI)
Ø Security testing
Ø Internationalization, localization

• Acceptance testing
Ø Customer tests to decide if they

accept the product

Oct 22, 2021 Sprenkle - CSCI209 28

28

10/22/21

15

Discussion: Your Testing Process
•How do you test?
•Categorize what you test/look for
•Are you a good tester? Why or why not?
ØWhat do you do well?
ØWhat do you need to get better at?

Oct 22, 2021 Sprenkle - CSCI209 29

29

Common Bad Development Approaches
•Run the code. Did it do what you expect?

<shrug/>
•Identify bug. Fix the bug on the test case that

revealed the error. Don’t test the other cases.
ØSimilar: made a change to code (famous last words: “it

shouldn’t affect anything”) and don’t retest

•Random (only) testing
Oct 22, 2021 Sprenkle - CSCI209 30

30

10/22/21

16

Software Testing Issues
•How should you test? How often?

ØCode may change frequently
ØCode may depend on others’ code
ØA lot of code to validate

•How do you know that an output is correct?
ØComplex output
ØHuman judgment?

•What caused a code failure?
Oct 22, 2021 Sprenkle - CSCI209 31

➥ Need a systematic, automated,
repeatable approach

31

Some Approaches to Testing Methods
•Typical case

ØTest typical values of input/parameters
•Boundary conditions

ØTest at boundaries of input/parameters
ØMany faults live “in corners”

•Parameter validation
ØVerify that parameter and object bounds are documented

and checked
ØExample: pre-condition that parameter isn’t null

Oct 22, 2021 Sprenkle - CSCI209 32➥ All black-box testing approaches

32

10/22/21

17

COLLABORATION
Looking Ahead: Team Projects

Oct 22, 2021 Sprenkle - CSCI209 33

33

Oct 22, 2021 Sprenkle - CSCI209 34

34

10/22/21

18

Oct 22, 2021 Sprenkle - CSCI209 35

35

Think about Team (Group) Projects
•Why did some work well?
•Why were some disasters?

Oct 22, 2021 Sprenkle - CSCI209 36

36

10/22/21

19

Teams Work Best When They are Interdependent

•In code terms, we want loose coupling
ØDepend on each other but don’t depend on their details

•Consider
ØAre you allowing your team to truly be interdependent?
ØWho might be you be ignoring?
ØWho might be allowing themselves to feel inadequate?
ØHow do you show appreciation for each other and

yourself?
Oct 22, 2021 Sprenkle - CSCI209 37

37

Collaboration: Team Project
•Version Control does not eliminate need for

communication
ØProcess becomes much more difficult if developers do

not communicate

•Keep the version to be graded in main branch
•Before picking up again, pull the repository
ØGet others’ changes

Oct 22, 2021 Sprenkle - CSCI209 38

38

10/22/21

20

Collaboration: Workflow – Seeking Feedback
1. Create a branch for your work

ØCommit periodically
ØWrite descriptive comments so your team members know what

you did and why
2. Push your branch
3. Open a Pull Request on your branch

ØDiscuss and review potential changes – can still update
Ø You can tag your teammates to let them know that you’ve

completed your work
4. Merge pull request into main branch

Oct 22, 2021 Sprenkle - CSCI209 39

39

Collaboration: Workflow
1. Create a branch for your work

ØCommit periodically
ØWrite descriptive comments so your team members know what

you did and why
2. Switch to main
3. Pull main branch
4. Merge your branch into the main branch

Ø Handle merge conflicts
Ø Commit

5. Push main branch
Oct 22, 2021 Sprenkle - CSCI209 40

40

10/22/21

21

First Team Project – Unit Testing!
•Released Monday
•Create your own teams of 3, with team names
ØEmail me by Monday at 5 p.m., CCing your teammates

with your team members and team name
ØI can help with matching

Oct 22, 2021 Sprenkle - CSCI209 41

41

Collaboration: Team Project
• Need to talk about the solution
• Discuss your plan, e.g.,

ØYour system for testing to make sure that you test everything
ØYour assumptions
ØOrganization of test cases
ØNaming
ØDivision of labor

• Maintain planning documents too
Øin GitHub or elsewhere

Oct 22, 2021 Sprenkle - CSCI209 42

42

10/22/21

22

Looking Ahead
•Testing – Canvas reading quiz
•Make teams for upcoming testing project
ØEmail me

•Monday – bring laptop or can use lab machine
ØClone the lab project – wait on email from me

Oct 22, 2021 Sprenkle - CSCI209 43

43

