
10/25/21

1

Objectives
•Unit Testing

Oct 25, 2021 Sprenkle - CSCI209 1

1

Review
1.Describe the general testing process
2.What is a set of test cases called?
3.What is unit testing?
4.What are the benefits of unit testing?
5.What are the characteristics of good unit tests?
6.What are the steps in a JUnit Test Case?

ØHow do we implement those steps?
7.What is test-driven development?

Oct 25, 2021 Sprenkle - CSCI209 2

2

10/25/21

2

Review: Software Testing Process

•Test Suite: set of test cases
Oct 25, 2021 Sprenkle - CSCI209 3

Input Program Actual
Output

Test Case

Program
Under Test

Expected
Output ?

pass or fail

3

Review: Why Unit Test?
•Verify code works as intended in isolation
•Find defects early in development

ØEasier to test small pieces
ØLess cost than at later stages (e.g., when integrating)

•Suite of (small) test cases to run after code changes
ØAs application evolves, new code is more likely to break

existing code
ØAlso called regression testing

Oct 25, 2021 Sprenkle - CSCI209 4

4

10/25/21

3

Review: Characteristics of Good Unit Testing
• Automatic

Ø Since unit testing is done frequently, don’t want humans slowing the
process down

Ø Automate executing test cases and evaluating results
Ø Input: in test itself or from a file

• Thorough
Ø Covers all code/functionality/cases

• Repeatable
Ø Reproduce results (correct, failures)

• Independent
Ø Test cases are independent from each other
Ø Easier to trace fault to code

Oct 25, 2021 Sprenkle - CSCI209 5

5

Review: Structure of a JUnit Test
1. Set up the test case (optional)

Ø Example: Creating objects
Ø @BeforeAll (once per class), @BeforeEach (before each test)

2. Exercise the code under test
Ø Within @Test method

3. Verify the correctness of the results
Ø Within @Test method – use assert methods

4. Teardown (optional)
Ø Example: reclaim created objects
Ø @AfterEach (after each test), @AfterAll (once per class)

Oct 25, 2021 Sprenkle - CSCI209 6

6

10/25/21

4

Review: Assert Methods
• Defined in org.junit.jupiter.api.Assertions

ØVariety of assert methods available
•If fail, throw an error
•Otherwise, test keeps executing
•All are static void
•Example: assertEquals(Object expected, Object actual)

Sprenkle - CSCI209 7

@Test
public void addTest() {

…
assertEquals(4, calculator.add(3, 1));

} Oct 25, 2021

7

Review: Example Testing the CD class

Oct 25, 2021 Sprenkle - CSCI209 8

private CD testCD;

@BeforeEach
public void setUp() {

testCD = new CD("CD title", "CD Artist", 100, 1997, 11, false);
}

@Test
public void testInCollection() {

assertFalse(testCD.isInCollection());
testCD.setInCollection();
assertTrue(testCD.isInCollection());

}

Exercising the code and verifying its correctness

8

10/25/21

5

Review: Expecting an Exception
•Sometimes an exception is the expected result

Oct 25, 2021 Sprenkle - CSCI209 9

@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class,
() -> { Object o = emptyList.get(0); }

);
}

Test case passes only if exception is thrown

9

Expecting an Exception: Breaking It Down

Oct 25, 2021 Sprenkle - CSCI209 10

@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class,
() -> { Object o = emptyList.get(0); }

);

}

assertThrows(Class<T> expectedType, Executable executable)

How to read assertThrows:
Execute the highlighted code (in {})
and check if it throws that exception type

A lot more can be said about lambda expressions… but not in CSCI209

10

https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html?is-external=true
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/function/Executable.html

10/25/21

6

Expecting an Exception
•Can also check characteristics of the thrown

exception

Oct 25, 2021 Sprenkle - CSCI209 11

@Test
public void testIndexOutOfBoundsException() {
List myList = new ArrayList();
IndexOutOfBoundsException ioobExc =

assertThrows(IndexOutOfBoundsException.class, () -> {
myList.get(0);

});
System.out.println(ioobExc.getMessage());
assertEquals("Index 0 out of bounds for length 0",

ioobExc.getMessage());
}

Test case passes only if exception is thrown
and message matches

11

Review: Some Approaches to Testing Methods
•Typical case

ØTest typical values of input/parameters
•Boundary conditions

ØTest at boundaries of input/parameters
ØMany faults live “in corners”

•Parameter validation
ØVerify that parameter and object bounds are documented

and checked
ØExample: pre-condition that parameter isn’t null

Oct 25, 2021 Sprenkle - CSCI209 12➥ All black-box testing approaches

12

10/25/21

7

EVALUATING TEST SUITES

Oct 25, 2021 Sprenkle - CSCI209 13

13

Evaluating Test Suites
•Software testing research question:

Is my approach to generating a test suite better than
the state-of-the-art test suite generation?

•One approach to answer question:
Fault-based Evaluation
ØGiven known faults (a.k.a. mutants)
ØHow many faults/mutants does my test suite kill/unveil?

• Kill a fault by creating a test case that fails when exercising that
fault

Oct 25, 2021 Sprenkle - CSCI209 14

14

10/25/21

8

Lab: Catching the Mutants
•Set Up
ØUse of jar file (contains mutant class files)
ØClasspath – tell compiler/JVM to use JUnit and

mutants.jar

•Objective: Practice writing JUnit test cases
•Goal: reveal all the bugs/mutants!

Oct 25, 2021 Sprenkle - CSCI209 15

15

Lab: Catching the Mutants
•Objective: Practice writing JUnit test cases
•Goal: reveal all the bugs/mutants!
•Why designed this way:
ØYou get feedback on if you’ve tested “enough”
ØPractice testing – knowing how much more you need

to do
•Not typically known in the real world!

Oct 25, 2021 Sprenkle - CSCI209 16

16

10/25/21

9

Catching the Mutants: Post-Mortem
•What are the benefits of unit testing/using JUnit?

ØConsider if you were developing/maintaining the method
ØHow would your testing/development process change?

•Why did the output come out in strange orders
sometimes?

•Is it okay that some mutants passed some of the test
cases?

•Recall the characteristics of good unit tests
ØHow did you achieve them in your testing?

Oct 25, 2021 Sprenkle - CSCI209 17

17

Are These Effective Tests?

Oct 25, 2021 Sprenkle - CSCI209 18

@Test
public void testThirdShortest() {

String[] words = { "a", "ab", "abc" };
String actual = mutant.thirdShortest(words);
assertEquals(3, actual.length());

}

@Test
public void testExceptionThrown() {

String[] words = { "a" };
assertThrows(Exception.class, () -> {

mutant.thirdShortest(words);
});

}

18

10/25/21

10

Test Discussion
•They are correct tests
ØThey will reveal bugs

•However, they are weak tests
ØCover necessary invariants, but they are not sufficient

to expose failures

Oct 25, 2021 Sprenkle - CSCI209 19

@Test
public void testThirdShortest() {

String[] words = { "a", "ab", "abc" };
String actual =
mutant.thirdShortest(words);
assertEquals("abc", actual);

}

@Test
public void testExceptionThrown() {

String[] words = { "a" };
assertThrows(IllegalArgumentException.class,
() -> {

mutant.thirdShortest(words);
});

}

Check the actual result

Expect the exact exception

19

Testing More Than One Possible Answer
•thirdShortest only returns one answer (a

String) but there could be multiple different
correct answers
ØWe can discuss if this is the best design but …

•Example test

Oct 25, 2021 Sprenkle - CSCI209 20

@Test
public void testMoreInArray2() {

String[] words = { "a", "b", "bc", "ab", "bye", "and" };
String result = mutant.thirdShortest(words);
assertTrue(result.equals("bye") || result.equals("and"));

}

20

10/25/21

11

Is This An Effective Test?

Oct 25, 2021 Sprenkle - CSCI209 21

@Test
public void testAll() {

String[][] tests = { { "a", "ab", "abc" },
{ "1", "12", "12345", "12345345", "234oi34iuwer" },
{ "cba", "abc", "bca", "a", "a", "a", "ab", "ab", "ab" } };

assertEquals(mutant.thirdShortest(tests[0]), "abc");
assertEquals(mutant.thirdShortest(tests[1]), "12345");
assertTrue(mutant.thirdShortest(tests[2]).equals("cba") ||

mutant.thirdShortest(tests[2]).equals("abc") ||
mutant.thirdShortest(tests[2]).equals("bca"));

assertThrows(IllegalArgumentException.class, () -> {
mutant.thirdShortest(null) });

assertThrows(IllegalArgumentException.class, () -> {
mutant.thirdShortest(new String[]{}); });

assertThrows(IllegalArgumentException.class, () -> {
mutant.thirdShortest(new String[]{ "hey" }); });

assertThrows(IllegalArgumentException.class, () -> {
mutant.thirdShortest(new String[]{ "hey", "there" }); });

String[] words = { "abcds", "b", "bc", "ab", "bye", "and" };
String[] original = { "abcds", "b", "bc", "ab", "bye", "and" };
result = mutant.thirdShortest(words);
assertTrue(result.equals("bye") || result.equals("and"));
assertEquals(Arrays.asList(words), Arrays.asList(original));

…

21

Is This An Effective Test?

Oct 25, 2021 Sprenkle - CSCI209 22

@Test
public void testAll() {

String[][] tests = { { "a", "ab", "abc" },
{ "1", "12", "12345", "12345345", "234oi34iuwer" },
{ "cba", "abc", "bca", "a", "a", "a", "ab", "ab", "ab" } };

assertEquals(mutant.thirdShortest(tests[0]), "abc");
assertEquals(mutant.thirdShortest(tests[1]), "12345");
assertTrue(mutant.thirdShortest(tests[2]).equals("cba") ||

mutant.thirdShortest(tests[2]).equals("abc") ||
mutant.thirdShortest(tests[2]).equals("bca"));

assertThrows(IllegalArgumentException.class, () -> {
mutant.thirdShortest(null) });

assertThrows(IllegalArgumentException.class, () -> {
mutant.thirdShortest(new String[]{}); });

assertThrows(IllegalArgumentException.class, () -> {
mutant.thirdShortest(new String[]{ "hey" }); });

assertThrows(IllegalArgumentException.class, () -> {
mutant.thirdShortest(new String[]{ "hey", "there" }); });

String[] words = { "abcds", "b", "bc", "ab", "bye", "and" };
String[] original = { "abcds", "b", "bc", "ab", "bye", "and" };
result = mutant.thirdShortest(words);
assertTrue(result.equals("bye") || result.equals("and"));
assertEquals(Arrays.asList(words), Arrays.asList(original));

…

May be effective but hard to use
Tests are not independent
Will be hard to pinpoint bugs

22

10/25/21

12

Guidance for Writing Tests
•Group tests in methods, classes
ØClass could be by behavior, by error conditions, …

•Test methods should focus on one behavior
ØIf test case fails, should be helpful in narrowing down

where the problem is

•See examples on course schedule

Oct 25, 2021 Sprenkle - CSCI209 23

23

Review: Test-Driven Development
•A development style, evolved from Extreme

Programming
•Idea: write tests first without code bias
•The Process:

1. Write tests that code/new functionality should pass
• Like a specification for the code (pre/post conditions)
• All tests will initially fail

2. Write the code and verify that it passes test cases
• Know you’re done coding when you pass all tests

Oct 25, 2021 Sprenkle - CSCI209 24What assumption does this make?

How do you know you’re “done”
in traditional development?

24

10/25/21

13

Project: Test-Driven Development
• Given: a Car class that only has enough code to compile
• Your job: Create a good set of test cases that

thoroughly/effectively test Car class
ØFind faults in my faulty version of Car class
ØStart: look at code, think about how to test, set up JUnit tests
ØWritten analysis of process

• First team project: teams of 3
ØPractice collaboration
ØEvery student must commit code to the repository

• Due before 5 p.m. today
ØFirst step: create teams (and team names!) today

Oct 25, 2021 Sprenkle - CSCI209 25

25

Oct 25, 2021 Sprenkle - CSCI209 26

26

10/25/21

14

Think about Team (Group) Projects
•Why did some work well?
•Why were some disasters?

Oct 25, 2021 Sprenkle - CSCI209 27

27

Teams Work Best When They are Interdependent

•In code terms, we want loose coupling
ØDepend on each other but don’t depend on their details

•Consider
ØAre you allowing your team to truly be interdependent?
ØWho might be you be ignoring?
ØWho might be allowing themselves to feel inadequate?
ØHow do you show appreciation for each other and

yourself?
Oct 25, 2021 Sprenkle - CSCI209 28

28

10/25/21

15

Collaboration: Team Project
• Need to talk about the solution
• Discuss your plan, e.g.,

ØYour system for testing to make sure that you test everything
ØYour assumptions about the Car class
ØOrganization of test cases
ØNaming
ØDivision of labor

• Maintain planning documents too
Øin GitHub or elsewhere

Oct 25, 2021 Sprenkle - CSCI209 29

29

Collaboration: Team Project
•Version Control does not eliminate need for

communication
ØProcess becomes much more difficult if developers do

not communicate

•Keep the version to be graded in main branch
•Before picking up again, pull the repository
ØGet others’ changes

Oct 25, 2021 Sprenkle - CSCI209 30

30

10/25/21

16

Collaboration: Workflow – Seeking Feedback
1. Create a branch for your work

ØCommit periodically
ØWrite descriptive comments so your team members know what you

did and why
2. Push your branch
3. Open a Pull Request on your branch

Ø Discuss and review potential changes – can still update
Ø You can tag your teammates to let them know that you’ve

completed your work
4. Merge pull request into main branch
5. Pull the main branch to get the latest code

Oct 25, 2021 Sprenkle - CSCI209 31

31

Collaboration: Workflow
1. Create a branch for your work

ØCommit periodically
ØWrite descriptive comments so your team members know what

you did and why
2. Switch to main
3. Pull main branch
4. Merge your branch into the main branch

Ø Handle merge conflicts
Ø Commit

5. Push main branch
Oct 25, 2021 Sprenkle - CSCI209 32

32

10/25/21

17

Looking Ahead
•Testing Project due next Tuesday at 11:59 p.m.

1. THINK
2. DISCUSS as a team
3. Then write the tests

•Teams finalized today
•Lab was an in-class exercise
ØPractice JUnit testing before project

Oct 25, 2021 Sprenkle - CSCI209 33

33

