
11/9/21

1

Objectives
•Coverage, Testing wrap up
•Design in the Small

Nov 1, 2021 Sprenkle - CSCI209 1

1

Review
1.What is code coverage?
2.What is code coverage criteria?
Ø Provide examples of code coverage criteria

3.How can you use/apply code coverage?
4.What are the benefits and limitations of code

coverage?
5.What are different categories of testing?

Nov 1, 2021 Sprenkle - CSCI209 2

2

11/9/21

2

Review: Code Coverage
•Code coverage: the amount of code that your

tests execute
•Code coverage criteria: metric used
ØStatement: number/% of statements executed
ØBranch: number/% of statements + branches

(conditions, loops) executed
ØPath: number/% of paths executed

Nov 1, 2021 Sprenkle - CSCI209 3

3

Review: Uses of Coverage Criteria
•“Stopping” rule à sufficient testing
ØAvoid unnecessary, redundant tests

•Measure test quality
ØDependability estimate
ØConfidence in estimate

•Specify test cases
ØDescribe additional test cases needed

Nov 1, 2021 Sprenkle - CSCI209 4

4

11/9/21

3

Review: Coverage Limitations
•A test suite of test cases that all pass that has

100% [statement/branch/path] coverage of does
not mean bug-free code
ØErrors of omission
•Can’t cover what isn’t there

ØDifferent data values on same execution path may
expose errors

Nov 1, 2021 Sprenkle - CSCI209 5

Coverage + Other smarts to Create Good Tests à High-quality code

5

Review: Categories of Testing
(Non-Exhaustive)
• Black-box testing

Ø Test functionality
Ø No knowledge of the code

• White-box testing
Ø Have access to code
ØGoal: execute all code

• Non-functional testing
Ø Performance testing
Ø Usability testing (HCI)
Ø Security testing
Ø Internationalization, localization

• Acceptance testing
Ø Customer tests to decide if

accepts product

Nov 1, 2021 Sprenkle - CSCI209 6

6

11/9/21

4

OBJECT-ORIENTED DESIGN PRINCIPLES

Nov 1, 2021 Sprenkle - CSCI209 7

7

Designing Systems

• Requirements change
• Misunderstandings

in requirements
• New functionality

• Code must be soft
Ø Flexible
Ø Easy to change

• New or revised circumstances
• New contexts
• Fix bugs

Nov 1, 2021 Sprenkle - CSCI209 8

All systems change during their life cycle

8

11/9/21

5

Designing for Change Example
• July 2010, Oracle released Java 6 update 21

ØGenerated java.dll replaced
• COMPANY_NAME=Sun Microsystems, Inc. with
• COMPANY_NAME=Oracle Corporation

• Change caused OutOfMemoryError during Eclipse launch
ØEclipse versions 3.3-3.6 (widespread!)
ØWhy? Eclipse used the company name in the DLL in startup

(runtime parameters) on Windows
• Temporary Fix: Oracle changed name back
• Required changes to all Eclipse versions

Nov 1, 2021 Sprenkle - CSCI209 9Source: http://www.infoq.com/news/2010/07/eclipse-java-6u21

9

Designing Systems

•Questions to consider:
ØHow can we create designs that are stable in the face of

change?
ØHow do we know if our designs aren’t maintainable?
ØWhat can we do if our code isn’t maintainable?

•Answers will help us
ØDesign our own code
ØUnderstand others’ code

Nov 1, 2021 Sprenkle - CSCI209 10

All systems change during their life cycle

10

11/9/21

6

Designing Systems

•Questions to consider:
ØHow can we create designs that are stable in the face of

change?
ØHow do we know if our designs aren’t maintainable?
ØWhat can we do if our code isn’t maintainable?

•Answers will help us
ØDesign our own code
ØUnderstand others’ code

Nov 1, 2021 Sprenkle - CSCI209 11

All systems change during their life cycle

11

Best Practices Overview
• (DRY): Don’t repeat yourself
• Shy Code, Avoid Coupling
• Tell, Don’t Ask

• Avoid code smells

• SOLID
Ø Single Responsibility Principle
Ø Open-closed principle
Ø Liskov Substitution Principle
Ø Interface Segregation Principle
Ø Dependency Inversion Principle

Nov 1, 2021 Sprenkle - CSCI209 12

A lot of related fundamental principles

12

11/9/21

7

Don’t Repeat Yourself (DRY):
Knowledge Representation

•Intuition: when need to change representation,
make in only one place

•Requires planning
ØWhat data needed, how represented (e.g., type)

Nov 1, 2021 Sprenkle - CSCI209 13

Every piece of knowledge must have a
single, unambiguous, and authoritative representation within a system

13

Don’t Repeat Yourself (DRY):
Knowledge Representation

•Example:
ØCar class defined constants for gears
ØCarTest should refer to those constants
•Not redefine those gears, nor just hardcode numbers

Nov 1, 2021 Sprenkle - CSCI209 14

Every piece of knowledge must have a
single, unambiguous, and authoritative representation within a system

14

11/9/21

8

Don’t Repeat Yourself (DRY):
Knowledge Representation

•Example:
Ø Birthday class had a month

• Could be represented as a number and a String
ØBest: represent as a number (only)

• Get month String from the number (e.g.,
MONTHS_OF_YEAR[month-1])

ØWhy?
Nov 1, 2021 Sprenkle - CSCI209 15

Every piece of knowledge must have a
single, unambiguous, and authoritative representation within a system

15

Don’t Repeat Yourself (DRY):
Knowledge Representation

• Example:
Ø Birthday class had a month

• Could be represented as a number and a String
Ø Best: represent as a number (only)

• Get month String from the number (e.g., MONTHS_OF_YEAR[month-
1])

ØWhy? If need to update the month, just one variable needs to
be updated, not two that can get out of sync

Nov 1, 2021 Sprenkle - CSCI209 16

Every piece of knowledge must have a
single, unambiguous, and authoritative representation within a system

16

11/9/21

9

Shy Code
•Goal: Won’t reveal too much of itself
•Otherwise: get coupling
ØCoupling: dependence on other code
ØStatic, dynamic, domain, temporal

•Coupling isn’t always bad…
ØCan’t be completely avoided…

Nov 1, 2021 Sprenkle - CSCI209 17

What techniques have we discussed for how to keep our code shy?

17

Achieving Shy Code
•Private instance variables
ØEspecially mutable fields

•Make classes public only when need to be public
Øi.e., accessible by other classesà part of API

•Getter methods shouldn’t return private,
mutable state/objects
ØUse clone() before returning

Nov 1, 2021 Sprenkle - CSCI209 18

How can you make
any field immutable?

18

11/9/21

10

Coupling Overview
• Interdependence of classes

ØDependence makes class susceptible to breaking if other class
changes

• Class A is coupled with class B if class A
ØHas an object of type B

• Instance variable, Parameter, return type
ØCalls on methods of object B
ØIs a child class of or implements B

• Goal: Loose coupling
ØNon-goal: no coupling

Nov 1, 2021 Sprenkle - CSCI209 19

19

Static Coupling
•Code requires other code to compile
•Clearly, we need some static coupling!
ØExample: to display a line of text, we need the code

for System.out

•Problem if you include more than you need

Nov 1, 2021 Sprenkle - CSCI209 20

20

11/9/21

11

Static Coupling
•Code requires other code to compile
•Problem if you include more than you need
ØExample: poor use of inheritance
•Brings excess baggage
• Inheritance is reserved for “is-a” relationships

ØBase class should not include optional behavior
ØNot “uses-a” or “has-a”

•Solution: use composition or delegation instead
Nov 1, 2021 Sprenkle - CSCI209 21

21

Static Coupling
•Code requires other code to compile
•Problem if you include more than you need
•Solution: use composition or delegation instead

ØExample: I created a class where I have keys associated
with values. I shouldn’t extend HashMap, but use a
HashMap

ØExample: GamePiece class should not include chase
functionality
• Only certain child classes need that functionality

Nov 1, 2021 Sprenkle - CSCI209 22

22

11/9/21

12

Tell, Don’t Ask
• When designing methods, think of them as sending a message

ØSend a message
ØGet a response

• Method call: 1) sends a request to do something; 2) response is
what is returned
ØDon’t ask about details
ØBlack-box, encapsulation, information hiding

• Example: isPalindrome(String s)
Ø Input: the “raw” string to the method
ØOutput: if it’s a palindrome or not

• Don’t need to know how the spaces and casing were ignored; no printing

Nov 1, 2021 Sprenkle - CSCI209 25

25

Single Responsibility Principle

Nov 1, 2021 Sprenkle - CSCI209 26

26

11/9/21

13

Single Responsibility Principle (SRP)

•Intuition:
ØEach responsibility is an axis of change
•More than one reason to change

ØResponsibilities become coupled
•Changing one may affect the other
•Code breaks in unexpected ways

Nov 1, 2021 Sprenkle - CSCI209 27

There should never be more than one reason for a class to change

This idea has come up before in class. Give an example of adhering to SRP.

27

Example

•Reasonable interface
•But has more than one responsibility
•Check:

ØChange for different reasons?
ØCalled from different parts of program?

Nov 1, 2021 Sprenkle - CSCI209 28

interface Network {
public void connect();
public void disconnect();
public void send(String s);
public String receive();

}

Serverport

28

11/9/21

14

Example

• Reasonable interface
• But has more than one responsibility
• In Java

Ø Socket class does connect/disconnect
ØUse separate Streams to send and receive data on the Socket

Nov 1, 2021 Sprenkle - CSCI209 29

interface Network {
public void connect();
public void disconnect();
public void send(String s);
public String receive();

}

Serverport

29

Open-Closed Principle (OCP)

• Bertrand Meyer
ØAuthor of Object-Oriented Software Construction

• Foundational text of OO programming
• Design modules that never change after completely

implemented
• If requirements change, extend behavior by adding code

ØBy not changing existing code à we won’t create bugs!
Nov 1, 2021 Sprenkle - CSCI209 30

Principle: Software entities (classes, modules, methods, etc.)
should be open for extension but closed for modification

30

11/9/21

15

Attributes of Software that Adhere to OCP
•Open for Extension
ØBehavior of module can be extended
ØMake module behave in new and different ways

•Closed for Modification
ØNo one can make changes to module

Nov 1, 2021 Sprenkle - CSCI209 31

These attributes seem to be at odds with each other.
How can we resolve them?

31

OCP Solution: Use Abstraction
•Abstract base class or interface
ØFixed abstraction à API
ØCannot be changed (closed to modification)

•Derived classes: possible behaviors
ØCan always create new child classes of abstract base

class
Ø(Open to extension)

Nov 1, 2021 Sprenkle - CSCI209 32

32

11/9/21

16

OCP Solution: Use Abstraction
• Abstract base classes or interfaces

ØFixed abstraction à API
ØCannot be changed (closed to modification)

• Derived classes: possible behaviors
ØCan always create new child classes of abstract base class
Ø(Open to extension)

• Example: Create a new Baddie for Game
1. Add a new Baddie class that derives from GamePiece
2. Replace old goblin instantiation with new baddie in game
3. DONE!

Nov 1, 2021 Sprenkle - CSCI209 33

33

Not Open-Closed Principle
•Client uses Server class

Nov 1, 2021 Sprenkle - CSCI209 34

Client Server

public class Client {
public void method(Server x) {
…
}

}

34

11/9/21

17

public class Client {
public void method(AbstractServer x) {
…
}

}

Open-Closed Principle
•Client uses AbstractServer class

Nov 1, 2021 Sprenkle - CSCI209 35

Client Abstract
Server

Server

extends Server2

Or ServerInterface

35

Strategic Closure
•No significant program can be completely closed

•Must choose which changes to close
ØRequires knowledge of users, probability of changes

Nov 1, 2021 Sprenkle - CSCI209 36

Goal: Most probable changes
should be closed

36

11/9/21

18

Heuristics and Conventions
• Member variables are private

ØA method that depends on a variable cannot be closed to
changes to that variable

ØThe class itself can’t be closed to it
ØAll other classes should be

• No global variables
ØEvery module that depends on a global variable cannot be

closed to changes to that variable
ØWhat happens if someone uses variable in unexpected way?
ØCounter examples: System.out, System.in

Nov 1, 2021 Sprenkle - CSCI209 37
➥Apply abstraction to parts you think are going to change

37

Designing Systems

•Questions to consider:
ØHow can we create designs that are stable in the face of

change?
ØHow do we know if our designs aren’t maintainable?
ØWhat can we do if our code isn’t maintainable?

•Answers will help us
ØDesign our own code
ØUnderstand others’ code

Nov 1, 2021 Sprenkle - CSCI209 38

All systems change during their life cycle

38

11/9/21

19

Code Smells

• Duplicated code
• Long method
• Large class
• Long parameter list
• Very similar child classes
• Too many public variables
• Empty catch clauses

• Switch statements/long if
statements

• Shotgun surgery
• Literals
• Global variables
• Side effects
• Using instanceof

Nov 1, 2021 Sprenkle - CSCI209 39

A hint in the code that something
could be designed better

39

Process to Write Maintainable Code
Apply the design principles, but as your code
evolves, you’ll see that you didn’t always adhere to
the principles
1.Identify code smell
2.Refactor code to remove code smell
Ø Refactoring: Updating a program to improve its

design and maintainability without changing its
current functionality significantly

Nov 1, 2021 Sprenkle - CSCI209 40

40

11/9/21

20

Code Smell Case Study: Duplicated Code
•What’s the problem with duplicated code?
•Why do we like it?

ØWhat made us write the duplicated code?
•Refactor: How can we get rid of the duplicate code?

ØConsider different possibilities for where the duplicate
code is
• Same expression multiple times in a class
• Duplicate code in 2 sibling child classes
• Duplicate code in unrelated classes

Nov 1, 2021 Sprenkle - CSCI209 41

41

Problem of Duplicated Code
•If code changes, need to change in every location
•Duplicate effort to test code to make sure it

works
ØMore statements for test suite to test!

•When trying to search for code, may find a
duplicate codeà not the one you’re looking for
ØIncreased effort in debugging

Nov 1, 2021 Sprenkle - CSCI209 42

42

11/9/21

21

Looking Ahead
•More code smells, refactoring
•Testing project due tomorrow at midnight

Nov 1, 2021 Sprenkle - CSCI209 43

43

