
11/9/21

1

Objectives
•Code Smells
•Refactoring

Nov 3, 2021 Sprenkle - CSCI209 1

Set up Assignment 7 Project

1

Review
1.What is guaranteed in software development?

Ø This informs how we design our code
2.What are some of the best practices in object-

oriented design?
Ø Provide an example of the practice (in our assignments, in

our discussions, in Java, …)
3.What are code smells?
4.What is refactoring?
5.What is the process for writing maintainable code?

Nov 3, 2021 Sprenkle - CSCI209 2

2

11/9/21

2

Review: Designing Systems

•Questions to consider:
ØHow can we create designs that are stable in the face of

change?
ØHow do we know if our designs aren’t maintainable?
ØWhat can we do if our code isn’t maintainable?

•Answers will help us
ØDesign our own code
ØUnderstand others’ code

Nov 3, 2021 Sprenkle - CSCI209 3

All systems change during their life cycle

3

Review: Best Practices Overview
• (DRY): Don’t repeat yourself
• Shy Code, Avoid Coupling
• Tell, Don’t Ask

• Avoid code smells

• SOLID
Ø Single Responsibility Principle
Ø Open-closed principle
Ø Liskov Substitution Principle
Ø Interface Segregation Principle
Ø Dependency Inversion Principle

Nov 3, 2021 Sprenkle - CSCI209 4

A lot of related fundamental principles

4

11/9/21

3

Review: Process to Write Maintainable Code
Apply the design principles, but as your code
evolves, you’ll see that you didn’t always adhere to
the principles
1.Identify code smell
2.Refactor code to remove code smell
Ø Refactoring: Updating a program to improve its

design and maintainability without changing its
current functionality significantly

Nov 3, 2021 Sprenkle - CSCI209 5

5

Review: Code Smells

• Duplicated code
• Long method
• Large class
• Long parameter list
• Very similar child classes
• Too many public variables
• Empty catch clauses

• Switch statements/long if
statements

• Shotgun surgery
• Literals
• Global variables
• Side effects
• Using instanceof

Nov 3, 2021 Sprenkle - CSCI209 6

A hint in the code that something
could be designed better

6

11/9/21

4

Code Smell Case Study: Duplicated Code
•What’s the problem with duplicated code?
•Why do we like it?

ØWhat made us write the duplicated code?
•Refactor: How can we get rid of the duplicate code?

ØConsider different possibilities for where the duplicate
code is
• Same expression multiple times in a class
• Duplicate code in 2 sibling child classes
• Duplicate code in unrelated classes

Nov 3, 2021 Sprenkle - CSCI209 7

7

Problem of Duplicated Code
•If code changes, need to change in every location
•Duplicate effort to test code to make sure it

works
ØMore statements for test suite to test!

•When trying to search for code, may find a
duplicate codeà not the one you’re looking for
ØIncreased effort in debugging

Nov 3, 2021 Sprenkle - CSCI209 8

8

11/9/21

5

Duplicated Code Refactorings
•Consider: same expression multiple times in one

class
•Solution: Extract method
ØCall method from those two places

•Benefits:
ØReduces redundant code
ØMakes code easier to debug, test

Nov 3, 2021 Sprenkle - CSCI209 9

9

Duplicated Code Refactorings
•Consider: duplicated code in 2 sibling child

classes
•Solution: Extract method, put

into parent class
ØEclipse: extract method, pull up

•If similar but not duplicate, extract the duplicate
code or parameterize

Nov 3, 2021 Sprenkle - CSCI209 10

Parent

Sib1 Sib2

10

11/9/21

6

Duplicated Code Refactorings
•Consider: duplicated code in unrelated classes
•Ask: where does method belong?
•One solution:

ØExtract class
ØUse new class in current classes

•Another solution:
ØKeep in one class
ØOther class calls that method

Nov 3, 2021 Sprenkle - CSCI209 11

Why so much time on duplicated code?
It’s a common yet costly problem.

11

Refactoring: Solution to Code Smells

Nov 3, 2021 Sprenkle - CSCI209 12

After refactoring your code, what should you do next?

Refactoring: Updating a program to
improve its design and maintainability

without changing its current functionality significantly

12

11/9/21

7

Revised Process to Write Maintainable Code
Apply the design principles, but as your code
evolves, you’ll see that you didn’t always adhere to
the principles
1.Identify code smell
2.Refactor code to remove code smell
3.Test to confirm code still works!

Nov 3, 2021 Sprenkle - CSCI209 13

13

Code Smells
• For each of the following code smells, state

ØWhy these may occur in code
ØWhy they are a problem in terms of maintaining code

• Cite design principles
ØHow to fix them

• Code smells:
1. Long methods
2. Large class
3. Magic numbers (e.g., -1 or 480 in code)
4. Comments (non-API/Javadoc comments)

Nov 3, 2021 Sprenkle - CSCI209 14

Front two rows: 1, 3
Back two rows: 2, 4
Window side: swap order

14

11/9/21

8

Code Smell: Long Methods
•What’s the problem with long methods?
•What made us write them?
•How can we fix them?
•What is an issue with lots of short methods?

Nov 3, 2021 Sprenkle - CSCI209 15

15

Long Methods: Issues and Solutions
•Issues:

ØHard to understand (see) what method does
ØSmaller methods have reader overhead

• Look at code for called methods
• But, should use descriptive names
• In Eclipse, use F3 to jump to a method’s definition

•Solutions:
ØFind lines of code that go together (may be identified by a

comment) and extract method
Nov 3, 2021 Sprenkle - CSCI209 16

16

11/9/21

9

Code Smell: Large Class
•What’s the problem?

Nov 3, 2021 Sprenkle - CSCI209 17

17

Large Class
•Issue: Too many instance variables à trying to do

too much
ØViolates Single Responsibility Principle

•Solutions:
ØBundle groups of variables together into another class

• Look for common prefixes or suffixes
ØIf includes optional instance variables (only sometimes

used), create child classes
ØLook at how users use the class for ideas of how to break

it up
Nov 3, 2021 Sprenkle - CSCI209 18

Eclipse: Refactor à Extract Class or Extract Superclass

18

11/9/21

10

Literals or Magic Numbers
•If a number has a special meaning, make it a

constant
•Example: Distinguish between 0 and

NO_VALUE_ASSIGNED
ØIf value changes (e.g., -1 instead of 0), only one place

to change
ØLess error-prone (e.g., was I using 1 or -1?)

Nov 3, 2021 Sprenkle - CSCI209 19
Eclipse: Refactor à Extract Constant

19

Comments

ØDescribe what the code or method is doing
ØShould be reserved for why, not what

•Solutions:
ØIf need a comment for a block of code (or a long

statement) à create a method with a descriptive name
ØIf need a comment to describe method, rename method

with more descriptive name

Nov 3, 2021 Sprenkle - CSCI209 20

Problem: Comments used as Febreze to cover up smells

These [internal] comments are different from API comments

20

11/9/21

11

Code Smell: Using instanceof

Nov 3, 2021 Sprenkle - CSCI209 21

public void drawShape(Shape shape) {
if (shape instanceof Square) {

drawSquare(shape);
}
else if(shape instanceof Circle) {

drawCircle(shape);
}

}

•Why isn’t this good code?
ØAlways consider: how is this code likely to change?

•How could we write this in a better way?

21

Code Smell: Using instanceof
•Previous example: had to know all of the Shape

classes
ØUpdate whenever a Shape is added or removed

•Better code: Polymorphic!
ØThere was a draw method specific to each Shape
ØRefactor those methods into Shape child classes

Nov 3, 2021 Sprenkle - CSCI209 22

public void drawShape(Shape shape) {
shape.draw();

}

22

11/9/21

12

Code Smell: Lazy Class
•Problem

ØClass in question doesn’t do much
ØClasses cost time and money to maintain and understand

•How could this happen?
ØRefactoring!
ØPlanned to be implemented but never happened

•Solution
ØGet rid of class

• Inline or collapse subclass into parent class

Nov 3, 2021 Sprenkle - CSCI209 28

28

Code Smell: Speculative Generality
•Beware of too much abstraction, allowing for too

much flexibility that isn’t required

•Solution: Collapse classes

Nov 3, 2021 Sprenkle - CSCI209 29

29

11/9/21

13

More Code Smells
•Discuss more code smells and solutions (Design

Patterns) later

Nov 3, 2021 Sprenkle - CSCI209 30

30

Software Design Rules of Thumb
•Code smells are not always bad
ØDo not always mean code is poorly designed

•Open code is not always bad
•Need to use your judgment
ØGood judgment comes from experience.
ØHow do you get experience? Bad judgment works

every time

Nov 3, 2021 Sprenkle - CSCI209 31
Goal: Gain experience to improve your judgment

31

11/9/21

14

Refactoring Summary
• Write code and then rewrite code

ØEye toward extensibility, flexibility, maintainability, and readability
ØMaintain correctness

• Reading/understanding other people’s code can be difficult
ØMake your code readable, understandable

• Probably impossible to design/write “correctly” the first time
ØA lot harder to get the logic right, make sure you’re not creating

bugs, know/check the right answer…
ØDon’t necessarily know what is likely to change

Nov 3, 2021 Sprenkle - CSCI209 32

32

REFACTORING PRACTICE
Extensibility, Maintainability, Readability

Nov 3, 2021 Sprenkle - CSCI209 33

33

11/9/21

15

Simulating a Roulette Game

Nov 3, 2021 Sprenkle - CSCI209 34

34

Understanding Code
•Execute the code
ØWhat is the main driver for this project?

•What are each class’s responsibilities?

Nov 3, 2021 Sprenkle - CSCI209 35

35

11/9/21

16

Bug in the Code
•Determining if Odd/Even Bet was won is incorrect

Nov 3, 2021 Sprenkle - CSCI209 36

36

Understanding Code
•Focus: how open is the code to adding new kinds

of bets and how closed it is to modification?
ØHow many classes know about the Bet class?
ØWhat code would need to be added to Game to allow

the user to make another kind of bet that paid one to
one odds and was based on whether the number spun
was high (between 19 and 36) or low (between 1 and
18)?

Nov 3, 2021 Sprenkle - CSCI209 37

37

11/9/21

17

Roulette
•Goals

ØLearn to read, understand someone else’s code
• Refactoring can help

ØRefactor for extensibility, readability
ØJustify decisions
ØAutomated white-box testing practice

•No “right” answer
ØMany design decisions
ØDefend your design decisions in analysis

Nov 3, 2021 Sprenkle - CSCI209 38

38

Looking Ahead
•Roulette Assignment due next Thursday
•Exam next Friday

Nov 3, 2021 Sprenkle - CSCI209 39

39

