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Objectives
•Code Smells
•Refactoring
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Set up Assignment 7 Project
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Review
1.What is guaranteed in software development?

Ø This informs how we design our code
2.What are some of the best practices in object-

oriented design?
Ø Provide an example of the practice (in our assignments, in 

our discussions, in Java, …)
3.What are code smells?
4.What is refactoring?
5.What is the process for writing maintainable code?
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Review: Designing Systems

•Questions to consider:
ØHow can we create designs that are stable in the face of 

change?
ØHow do we know if our designs aren’t maintainable?
ØWhat can we do if our code isn’t maintainable?

•Answers will help us
ØDesign our own code
ØUnderstand others’ code
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All systems change during their life cycle
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Review: Best Practices Overview
• (DRY): Don’t repeat yourself
• Shy Code, Avoid Coupling
• Tell, Don’t Ask

• Avoid code smells

• SOLID
Ø Single Responsibility Principle
Ø Open-closed principle
Ø Liskov Substitution Principle
Ø Interface Segregation Principle
Ø Dependency Inversion Principle
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A lot of related fundamental principles
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Review: Process to Write Maintainable Code
Apply the design principles, but as your code 
evolves, you’ll see that you didn’t always adhere to 
the principles
1.Identify code smell
2.Refactor code to remove code smell
Ø Refactoring: Updating a program to improve its 

design and maintainability without changing its 
current functionality significantly
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Review: Code Smells

• Duplicated code
• Long method
• Large class
• Long parameter list
• Very similar child classes
• Too many public variables
• Empty catch clauses

• Switch statements/long if 
statements

• Shotgun surgery
• Literals
• Global variables
• Side effects
• Using instanceof
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A hint in the code that something
could be designed better
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Code Smell Case Study: Duplicated Code
•What’s the problem with duplicated code?
•Why do we like it?

ØWhat made us write the duplicated code?
•Refactor: How can we get rid of the duplicate code?

ØConsider different possibilities for where the duplicate 
code is
• Same expression multiple times in a class
• Duplicate code in 2 sibling child classes
• Duplicate code in unrelated classes
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Problem of Duplicated Code
•If code changes, need to change in every location
•Duplicate effort to test code to make sure it 

works
ØMore statements for test suite to test!

•When trying to search for code, may find a 
duplicate codeà not the one you’re looking for
ØIncreased effort in debugging
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Duplicated Code Refactorings
•Consider: same expression multiple times in one 

class
•Solution: Extract method
ØCall method from those two places

•Benefits:
ØReduces redundant code
ØMakes code easier to debug, test
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Duplicated Code Refactorings
•Consider: duplicated code in 2 sibling child 

classes
•Solution: Extract method, put 

into parent class
ØEclipse: extract method, pull up

•If similar but not duplicate, extract the duplicate 
code or parameterize
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Parent

Sib1 Sib2
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Duplicated Code Refactorings
•Consider: duplicated code in unrelated classes
•Ask: where does method belong?
•One solution:

ØExtract class
ØUse new class in current classes

•Another solution:
ØKeep in one class
ØOther class calls that method
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Why so much time on duplicated code?
It’s a common yet costly problem.
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Refactoring: Solution to Code Smells
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After refactoring your code, what should you do next?

Refactoring: Updating a program to 
improve its design and maintainability 

without changing its current functionality significantly
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Revised Process to Write Maintainable Code
Apply the design principles, but as your code 
evolves, you’ll see that you didn’t always adhere to 
the principles 
1.Identify code smell
2.Refactor code to remove code smell
3.Test to confirm code still works! 
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Code Smells
• For each of the following code smells, state

ØWhy these may occur in code
ØWhy they are a problem in terms of maintaining code

• Cite design principles
ØHow to fix them

• Code smells: 
1. Long methods
2. Large class
3. Magic numbers (e.g., -1 or 480 in code)
4. Comments (non-API/Javadoc comments)

Nov 3, 2021 Sprenkle - CSCI209 14

Front two rows: 1, 3
Back two rows: 2, 4 
Window side: swap order
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Code Smell: Long Methods
•What’s the problem with long methods?
•What made us write them?
•How can we fix them?
•What is an issue with lots of short methods?
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Long Methods: Issues and Solutions
•Issues:

ØHard to understand (see) what method does
ØSmaller methods have reader overhead

• Look at code for called methods
• But, should use descriptive names
• In Eclipse, use F3 to jump to a method’s definition

•Solutions:
ØFind lines of code that go together (may be identified by a 

comment) and extract method
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Code Smell: Large Class
•What’s the problem?
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Large Class
•Issue: Too many instance variables à trying to do 

too much
ØViolates Single Responsibility Principle

•Solutions:
ØBundle groups of variables together into another class

• Look for common prefixes or suffixes
ØIf includes optional instance variables (only sometimes 

used), create child classes
ØLook at how users use the class for ideas of how to break 

it up
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Eclipse: Refactor à Extract Class or Extract Superclass
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Literals or Magic Numbers
•If a number has a special meaning, make it a 

constant
•Example: Distinguish between 0 and 

NO_VALUE_ASSIGNED
ØIf value changes (e.g., -1 instead of 0), only one place 

to change
ØLess error-prone (e.g., was I using 1 or -1?)
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Eclipse: Refactor à Extract Constant

19

Comments

ØDescribe what the code or method is doing
ØShould be reserved for why, not what

•Solutions:
ØIf need a comment for a block of code (or a long 

statement) à create a method with a descriptive name
ØIf need a comment to describe method, rename method 

with more descriptive name
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Problem: Comments used as Febreze to cover up smells

These [internal] comments are different from API comments
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Code Smell: Using instanceof
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public void drawShape( Shape shape ) {
if ( shape instanceof Square ) {

drawSquare(shape);
}
else if( shape instanceof Circle ) {

drawCircle(shape);
}

}

•Why isn’t this good code?
ØAlways consider: how is this code likely to change?

•How could we write this in a better way?
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Code Smell: Using instanceof
•Previous example: had to know all of the Shape

classes
ØUpdate whenever a Shape is added or removed

•Better code: Polymorphic!
ØThere was a draw method specific to each Shape
ØRefactor those methods into Shape child classes
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public void drawShape( Shape shape ) {
shape.draw();

}
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Code Smell: Lazy Class
•Problem

ØClass in question doesn’t do much
ØClasses cost time and money to maintain and understand

•How could this happen?
ØRefactoring!
ØPlanned to be implemented but never happened

•Solution
ØGet rid of class

• Inline or collapse subclass into parent class
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Code Smell: Speculative Generality
•Beware of too much abstraction, allowing for too 

much flexibility that isn’t required

•Solution: Collapse classes
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More Code Smells
•Discuss more code smells and solutions (Design 

Patterns) later
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Software Design Rules of Thumb
•Code smells are not always bad
ØDo not always mean code is poorly designed

•Open code is not always bad
•Need to use your judgment
ØGood judgment comes from experience.
ØHow do you get experience?  Bad judgment works 

every time
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Goal: Gain experience to improve your judgment
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Refactoring Summary
• Write code and then rewrite code

ØEye toward extensibility, flexibility, maintainability, and readability
ØMaintain correctness

• Reading/understanding other people’s code can be difficult
ØMake your code readable, understandable

• Probably impossible to design/write “correctly” the first time
ØA lot harder to get the logic right, make sure you’re not creating 

bugs, know/check the right answer…
ØDon’t necessarily know what is likely to change
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REFACTORING PRACTICE
Extensibility, Maintainability, Readability
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Simulating a Roulette Game
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Understanding Code
•Execute the code
ØWhat is the main driver for this project?

•What are each class’s responsibilities?
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Bug in the Code
•Determining if Odd/Even Bet was won is incorrect
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Understanding Code
•Focus: how open is the code to adding new kinds 

of bets and how closed it is to modification?
ØHow many classes know about the Bet class?
ØWhat code would need to be added to Game to allow 

the user to make another kind of bet that paid one to 
one odds and was based on whether the number spun 
was high (between 19 and 36) or low (between 1 and 
18)? 
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Roulette
•Goals

ØLearn to read, understand someone else’s code
• Refactoring can help

ØRefactor for extensibility, readability
ØJustify decisions
ØAutomated white-box testing practice

•No “right” answer
ØMany design decisions
ØDefend your design decisions in analysis
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Looking Ahead
•Roulette Assignment due next Thursday
•Exam next Friday
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