
11/5/21

1

Objectives
•Code Smells
•Liskov Substitution Principle
•Design Patterns

Nov 5, 2021 Sprenkle - CSCI209 1

1

Before

Nov 5, 2021 Sprenkle - CSCI209 2

Check if path exists. if it doesn’t, exist create directory
if not os.path.exists(config['output_dir'] +

config['app_name'] + config['bot_dir'] + 'analysis'):
os.makedirs(config['output_dir'] +

config['app_name'] + config['bot_dir'] + 'analysis')
print("Created directory for" + config['output_dir'] +

config['app_name'] + config['bot_dir'] + 'analysis')

2

11/5/21

2

After

Nov 5, 2021 Sprenkle - CSCI209 3

Check if path exists. if it doesn’t, exist create directory
outputDir = config['output_dir'] +

config['app_name'] + config['bot_dir'] + 'analysis'
if not os.path.exists(outputDir):

os.makedirs(outputDir)
print("Created directory for", outputDir)

3

Review
1. What is guaranteed in software development?

Ø This informs how we design our code
2. What is the process for writing maintainable code?

Ø Define the terms in that process
3. What are some code smells and how do we address

them?
Ø What is common to how we address code smells?
Ø What was the code smell in Roulette’s code?

4. What is the open-closed principle?
Ø How does it relate to the Roulette code base?

Nov 5, 2021 Sprenkle - CSCI209 4

4

11/5/21

3

Review: Designing Systems

•Questions to consider:
ØHow can we create designs that are stable in the face of

change?
ØHow do we know if our designs aren’t maintainable?
ØWhat can we do if our code isn’t maintainable?

•Answers will help us
ØDesign our own code
ØUnderstand others’ code

Nov 5, 2021 Sprenkle - CSCI209 5

All systems change during their life cycle

5

Revised Process to Write Maintainable Code
Apply the design principles, but as your code
evolves, you’ll see that you didn’t always adhere to
the principles
1.Identify code smell
2.Refactor code to remove code smell
3.Test to confirm code still works!

Nov 5, 2021 Sprenkle - CSCI209 6

6

11/5/21

4

Review: Code Smells

• Duplicated code
• Long method
• Large class
• Long parameter list
• Very similar child classes
• Too many public variables
• Empty catch clauses

• Switch statements/long if
statements

• Shotgun surgery
• Literals
• Global variables
• Side effects
• Using instanceof

Nov 5, 2021 Sprenkle - CSCI209 7

A hint in the code that something
could be designed better

7

Review: Code Smell: Using instanceof

Nov 5, 2021 Sprenkle - CSCI209 8

public void drawShape(Shape shape) {
if (shape instanceof Square) {

drawSquare(shape);
}
else if(shape instanceof Circle) {

drawCircle(shape);
}

}

•Why isn’t this good code?
ØAlways consider: how is this code likely to change?

•How could we write this in a better way?

8

11/5/21

5

Review: Code Smell: Using instanceof
•Previous example: had to know all of the Shape

classes
ØUpdate whenever a Shape is added or removed

•Better code: Polymorphic!
ØThere was a draw method specific to each Shape
ØRefactor those methods into Shape child classes

Nov 5, 2021 Sprenkle - CSCI209 9

public void drawShape(Shape shape) {
shape.draw();

}

9

Review: Open-Closed Principle

• Design modules that never change after completely
implemented

• If requirements change, extend behavior by adding code
ØBy not changing existing code à we won’t create bugs!

• Closed: APIs/interfaces
• Open: add new implementations

Nov 5, 2021 Sprenkle - CSCI209 10

Principle: Software entities (classes, modules, methods, etc.)
should be open for extension but closed for modification

10

11/5/21

6

Lazy Class
•Problem

ØClass in question doesn’t do much
ØClasses cost time and money to maintain and understand

•How could this happen?
ØRefactoring!
ØPlanned to be implemented but never happened

•Solution
ØGet rid of class

• Inline or collapse subclass into parent class

Nov 5, 2021 Sprenkle - CSCI209 11

11

Speculative Generality
•Beware of too much abstraction, allowing for too

much flexibility that isn’t required

•Solution: Collapse classes

Nov 5, 2021 Sprenkle - CSCI209 12

12

11/5/21

7

LISKOV SUBSTITUTION PRINCIPLE
Design By Contract

Nov 5, 2021 Sprenkle - CSCI209 13

13

Liskov Substitution Principle (LSP)
•The substitution principle:

•In other words…

Nov 5, 2021 Sprenkle - CSCI209 14

If for each object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,

the behavior of P is unchanged when o1 is substituted for o2,
then S is a subtype of T.

If code is using a base class, then it should
be able to replace the base class with a derived class

without affecting the functioning of the code.

Liskov & Wing, 1994

14

11/5/21

8

Design by Contract
•By Bertrand Meyer (Open-Closed Principle)
•Methods of classes should declare preconditions

and postconditions
ØPreconditions must be met for method to execute
ØAfter executing, postconditions must be true
•Example for Rectangle’s setWidth:

ØmyWidth == newWidth && myHeight == oldHeight

Nov 5, 2021 Sprenkle - CSCI209 15

15

Design by Contract and LSP
•Methods of classes should declare preconditions and

postconditions
ØPreconditions must be met for method to execute
ØAfter executing, postconditions must be true

• Example for Rectangle’s setWidth:
ØmyWidth == newWidth && myHeight == oldHeight

•For derived/child classes
ØPreconditions can only be weakened
ØPostconditions can only be strengthened
➥Derivatives must adhere to base class’s constraints

Nov 5, 2021 Sprenkle - CSCI209 16

16

11/5/21

9

Design by Contract and LSP
•Recall: Programmer interacts with interface, e.g., the

base class

•For derivatives
ØPreconditions can only be weakened
ØPostconditions can only be strengthened
➥Derivatives must adhere to constraints for base class

Nov 5, 2021 Sprenkle - CSCI209 17

Base
Class

Derived
Class

Interface

What if preconditions are stronger?
What if postconditions are weaker?

17

Rectangle Class

Nov 5, 2021 Sprenkle - CSCI209 18

public class Rectangle {
private int myHeight;
private int myWidth;

public void setWidth(int w) {
myWidth = w;

}

public void setHeight(int h) {
myHeight = h;

}

// getters…
}

18

11/5/21

10

Square Class
•A square is a rectangle
ØBut a rectangle is not a square

•In the interest of code reuse:

•Any problems with this implementation?
ØInherits:

Nov 5, 2021 Sprenkle - CSCI209 19

public class Square extends Rectangle

private int myHeight;
private int myWidth;
public void setWidth(int w);
public void setHeight(int h);

19

To Keep Square Consistent…

Nov 5, 2021 Sprenkle - CSCI209 20

public void setWidth(int w) {
super.setWidth(w);
super.setHeight(w);

}

public void setHeight(int h) {
super.setWidth(h);
super.setHeight(h);

}

20

11/5/21

11

But What About Users of Classes?
•Consider the test method:

•What happens if a Square object is passed into
method?

Nov 5, 2021 Sprenkle - CSCI209 21

public void testMethod(Rectangle r) {
r.setWidth(5);
r.setHeight(4);
assertEquals(20, r.getWidth()*r.getHeight());

}

21

The Problem
•A Square object is not a Rectangle object
•Behaviors w.r.t. pre-/post-condition contract are

different
•Clients depend on those behaviors

Nov 5, 2021 Sprenkle - CSCI209 22

Lesson: All derivatives of class must have
the same contract-defined behavior

22

11/5/21

12

Summary of LSP
•Liskov Substitution Principle (a.k.a. design by

contract) is an important feature of programs
that conform to the Open-Closed Principle

•Derived types must be completely substitutable
for their base types

•Derived types can then be modified without
consequence

Nov 5, 2021 Sprenkle - CSCI209 23

23

Liskov Substitution Principle (LSP)
•Named after Barbara Liskov

ØMIT Professor of Engineering
Ø2008 ACM Turing Award
ØContributions to programming

languages, pervasive computing
ØTrivia: first woman in the United

States to receive a Ph.D. from a
computer science department
(Stanford, 1968)

Nov 5, 2021 Sprenkle - CSCI209 25Liskov & Wing, 1994
There is an advanced lab machine named after her.

25

11/5/21

13

& Wing
• Jeannette Wing

ØExecutive Vice President of
Research at Columbia
University

ØBig proponent of
computational thinking as
assistant director for
Computer and Information
Science and Engineering at
the NSF from 2007 to 2010

Nov 5, 2021 Sprenkle - CSCI209 26

26

DESIGN PATTERNS
How can we create designs that are stable in the face of change?

Nov 5, 2021 Sprenkle - CSCI209 27

27

11/5/21

14

Design Pattern

•Not a finished design that can be transformed
directly into code

•Description or template for how to solve a problem
that can be used in many different situations
Ø“Experience reuse” rather than code reuse

Nov 5, 2021 Sprenkle - CSCI209 28

General reusable solution to a commonly
occurring problem in software design

28

Defined Design Patterns
•Software best practices
•Catalogued and discussed in

Design Patterns: Elements of Reusable Object-
Oriented Software
ØWritten by the “Gang of Four”: Erich Gamma,

Richard Helm, Ralph Johnson and John Vlissides
•Erich Gamma also co-wrote original JUnit framework

ØDidn’t design the patterns; identified them

Nov 5, 2021 Sprenkle - CSCI209 29

29

11/5/21

15

Understanding Code with Design Patterns
1.Recognize design pattern in code base you’re

using
2.Understand code design better

Nov 5, 2021 Sprenkle - CSCI209 30

30

Applying Design Patterns
1.Recognize problem as one that can be solved by

a design pattern
2.Apply pattern to your problem

Nov 5, 2021 Sprenkle - CSCI209 31

Danger: over-applying design patterns
Ø Fall back: Identify and resolve code smells

31

11/5/21

16

Audubon Society calls…
•Need to represent all the different birds
ØVarious flying behaviors

(some fly, some don’t)
ØMake different sounds
ØExamples: Duck, Penguin, Hummingbird, Ostrich,

Chicken, Oriole, …

Nov 5, 2021 Sprenkle - CSCI209 32

How can we represent different birds?

32

Solution Non-Starter: Hierarchy of Classes
(under Bird parent class)
•FlyingBird

ØFlyHighBird
• ScreechingFlyHighBird

Ø Eagle

• ...

ØFlyLowBird
• SingingFlyLowBird
• SquawkingFlyLowBird
• …

•FlightlessBird
ØSingingFlightlessBird
ØSquawkingFlightlessBird
Ø…
Ø…

Nov 5, 2021 Sprenkle - CSCI209 33

Identify what is likely to change/vary:
• Flying
• Sound

What design principle do
these classes violate?

33

11/5/21

17

Towards a Solution:
Designing Flexible Behaviors
•Include behaviors in abstract Bird class
ØFlyBehavior has performFly() method
ØSoundBehavior has makeSound() method

•Could have setter methods in Bird class to
change these
ØExample: bird’s wings get clipped

Nov 5, 2021 Sprenkle - CSCI209 34

34

Designing Flexible Behaviors

Nov 5, 2021 Sprenkle - CSCI209 35

public abstract class Bird {
protected FlyBehavior flyB;
protected SoundBehavior soundB;

public Bird() {
…

}

public void performSound() {
soundB.makeSound();

}

public void performFly() {
flyB.performFly();

}
}

35

11/5/21

18

Designing Flexible Behaviors

Nov 5, 2021 Sprenkle - CSCI209 36

public class Duck extends Bird {
//Recall: protected FlyBehavior flyB;
//Recall: protected SoundBehavior soundB;

public Duck() {

}
…

}

What do we need to
do in here?

36

Designing Flexible Behaviors

Nov 5, 2021 Sprenkle - CSCI209 37

public class Duck extends Bird {
//Recall: protected FlyBehavior flyB;
//Recall: protected SoundBehavior soundB;

public Duck() {
flyB = new FlyHighBehavior();
soundB = new QuackBehavior();

}

} Do we need to do anything else to this class,
with respect to fly and sound behavior?

37

11/5/21

19

Class Diagram

Nov 5, 2021 Sprenkle - CSCI209 38

Bird
FlyBehavior

SoundBehavior
performSound()
performFly()

Duck

UML Diagram

NoFly
performFly()

FlyBehavior
performFly()

FlyHigh
performFly()

SoundBehavior
makeSound()

interface

(Implementations of interface …)

interface

association

QuackBehavior
makeSound()

38

Unified Modeling Language (UML)
•Standardized general-purpose modeling language
ØGraphical language for visualizing, specifying and

constructing the artifacts of a software system

•Includes a set of graphical notation techniques to
create abstract models of specific systems

•Used in designing a large system
ØFocus on big picture, not the code

Nov 5, 2021 Sprenkle - CSCI209 39

39

11/5/21

20

Class Diagram

Nov 5, 2021 Sprenkle - CSCI209 40

Bird
FlyBehavior

SoundBehavior
performSound()
performFly()

Duck

UML Diagram

NoFly
performFly()

FlyBehavior
performFly()

FlyHigh
performFly()

SoundBehavior
makeSound()

interface

(Implementations of interface …)

interface

association

QuackBehavior
makeSound()

How do we implement
Hummingbird?

Penguin? Ostrich?

40

Looking Ahead
•Assignment 7: Due Thursday
•Exam: next Fri - Sun

Nov 5, 2021 Sprenkle - CSCI209 41

41

