
11/8/21

1

Objectives
•Design Patterns
ØComposition, Delegation
ØStrategy
ØMVC

Nov 8, 2021 Sprenkle - CSCI209 1

1

Review
1.What is common to how we address most code

smells?
2.What is the design-by-contract/Liskov

Substitution Principle?
Ø How does it relate to the Roulette code base?

3.What are design patterns? How are they used?
4.What was the solution to the Audobon Society’s

bird modeling problem?
Nov 8, 2021 Sprenkle - CSCI209 2

2

11/8/21

2

Review: Summary of LSP
•Liskov Substitution Principle (a.k.a. design by

contract) is an important feature of programs that
conform to the Open-Closed Principle

•Derived types must be completely substitutable for
their base types
ØPreconditions can only be weakened
ØPostconditions can only be strengthened

•Derived types can then be switched out without
breaking the code

Nov 8, 2021 Sprenkle - CSCI209 3

3

Review: Design Pattern

•Not a finished design that can be transformed
directly into code

•Description or template for how to solve a problem
that can be used in many different situations
Ø“Experience reuse” rather than code reuse

Nov 8, 2021 Sprenkle - CSCI209 4

General reusable solution to a commonly
occurring problem in software design

4

11/8/21

3

Towards a Solution:
Designing Flexible Behaviors
•Include behaviors in abstract Bird class
ØFlyBehavior has performFly() method
ØSoundBehavior has makeSound() method

•Could have setter methods in Bird class to
change these
ØExample: bird’s wings get clipped

Nov 8, 2021 Sprenkle - CSCI209 5

5

Designing Flexible Behaviors

Nov 8, 2021 Sprenkle - CSCI209 6

public abstract class Bird {
protected FlyBehavior flyB;
protected SoundBehavior soundB;

public Bird() {
…

}

public void performSound() {
soundB.makeSound();

}

public void performFly() {
flyB.performFly();

}
}

6

11/8/21

4

Designing Flexible Behaviors

Nov 8, 2021 Sprenkle - CSCI209 7

public class Duck extends Bird {
//Recall: protected FlyBehavior flyB;
//Recall: protected SoundBehavior soundB;

public Duck() {

}
…

}

What do we need to
do in here?

7

Designing Flexible Behaviors

Nov 8, 2021 Sprenkle - CSCI209 8

public class Duck extends Bird {
//Recall: protected FlyBehavior flyB;
//Recall: protected SoundBehavior soundB;

public Duck() {
flyB = new FlyHighBehavior();
soundB = new QuackBehavior();

}

} Do we need to do anything else to this class,
with respect to fly and sound behavior?

8

11/8/21

5

Class Diagram

Nov 8, 2021 Sprenkle - CSCI209 9

Bird
FlyBehavior

SoundBehavior
performSound()
performFly()

Duck

UML Diagram

NoFly
performFly()

FlyBehavior
performFly()

FlyHigh
performFly()

SoundBehavior
makeSound()

interface

(Implementations of interface …)

interface

association

QuackBehavior
makeSound()

9

Unified Modeling Language (UML)
•Standardized general-purpose modeling language
ØGraphical language for visualizing, specifying and

constructing the artifacts of a software system

•Includes a set of graphical notation techniques to
create abstract models of specific systems

•Used in designing a large system
ØFocus on big picture, not the code

Nov 8, 2021 Sprenkle - CSCI209 10

10

11/8/21

6

Class Diagram

Nov 8, 2021 Sprenkle - CSCI209 11

Bird
FlyBehavior

SoundBehavior
performSound()
performFly()

Duck

UML Diagram

NoFly
performFly()

FlyBehavior
performFly()

FlyHigh
performFly()

SoundBehavior
makeSound()

interface

(Implementations of interface …)

interface

association

QuackBehavior
makeSound()

How do we implement
Hummingbird?

Penguin? Ostrich?

11

•Design Pattern: Composition
ØUsing other objects in your class
Ø“Delegate” responsibilities to this object

Nov 8, 2021 Sprenkle - CSCI209 12

Why is composition preferred over inheritance?

Design Principle:
Favor Composition Over Inheritance

12

11/8/21

7

•Design Pattern: Composition
ØUsing other objects in your class
Ø“Delegate” responsibilities to this object

•Why is composition preferred over inheritance?
ØInheritance à dependence on parent class

• Only want to depend on things you know won’t change (higher
stability)

ØComposition: Provide different behaviors for your class by
plugging in new object

Nov 8, 2021 Sprenkle - CSCI209 13

Design Principle:
Favor Composition Over Inheritance

13

Composition in the Bird Classes
• Bird class is composed of these

behaviors
• Flight
• Sound

• Can be easily switched out
• One place to change

implementation

Nov 8, 2021 Sprenkle - CSCI209 14

FlyHigh

NoFly

Tweet

Squawk

Bird1

Bird2

14

11/8/21

8

Dependency Inversion Principle

Nov 8, 2021 Sprenkle - CSCI209 18

Depend upon Abstractions

18

Audobon Solution

Nov 8, 2021 Sprenkle - CSCI209 19

Bird
FlyBehavior

SoundBehavior
performSound()
performFly()

Duck

UML Diagram

NoFly
performFly()

FlyBehavior
performFly()

FlyHigh
performFly()

SoundBehavior
makeSound()

interface

(Implementations of interface …)

interface

association

QuackBehavior
makeSound()

19

11/8/21

9

Strategy Pattern

Nov 8, 2021 Sprenkle - CSCI209 20

Bird
FlyBehavior

SoundBehavior
performSound()
performFly()

Duck

UML Diagram

NoFly
performFly()

FlyBehavior
performFly()

FlyHigh
performFly()

SoundBehavior
makeSound()

interface

(Implementations of interface …)

interface

association

QuackBehavior
makeSound()

Strategies

What are the benefits of the Strategy Pattern?
Have we seen it in use before?

20

Design Pattern: Strategy
•Defines a family of algorithms, encapsulates each

one, and makes them interchangeable
•Allows algorithm/behavior to vary independently

of clients that use it
ØAllows behavior changes at runtime

•Design Principle:

Nov 8, 2021 Sprenkle - CSCI209 21

Favor composition over inheritance

21

11/8/21

10

Roulette Sketch

Nov 8, 2021 Sprenkle - CSCI209 22

Game
play()

Bet1
isWon()
placed()

Bet
isWon()
placed()

Bet2
isWon()
placed()

interface

Strategies

association

22

Benefits of Solution to Audubon Problem
•Uses delegation

ØReduces Bird’s responsibilities
ØDelegate some responsibilities to SoundBehavior and
FlyBehavior

ØReduces Bird’s code
•Easy swap of different strategy

ØCan easily plug in different behavior/implementation
• Others using Bird class are coding to interface, not implementation

•Adheres to open-closed principle

Nov 8, 2021 Sprenkle - CSCI209 23

23

11/8/21

11

Summary of Design Patterns in Audubon Solution
• Applies composition pattern

ØUses-a or Has-a behavior rather than using inheritance
• Applies delegation pattern

ØReduces Bird’s responsibilities
ØDelegate some responsibilities to SoundBehavior and
FlyBehavior

ØReduces Bird’s code
• Applies strategy pattern

ØCan easily plug in different behavior/implementation
• Others using Bird class are coding to interface, not implementation

Nov 8, 2021 Sprenkle - CSCI209 24

24

Discussion: Applying Design Patterns
•When should we apply the delegation pattern?
ØExample, if X, then we should apply the pattern.

•When should we apply the strategy pattern?
•When will we know we’ve gone too far

(overapplying)?
ØWhat are some symptoms to look for?

Nov 8, 2021 Sprenkle - CSCI209 25

25

11/8/21

12

Discussion: Applying Design Patterns
• When should we apply the delegation pattern?

Ø When the requirements or implementations for a responsibility are likely to
change
• Change: Number/types of birds; types of behaviors; or lower-level implementation

details
• When should we apply the strategy pattern?

Ø When there are lots of desired behaviors for one responsibility and they
could change

• When will we know we’ve gone too far (overapplying)? What are some
symptoms to look for?
Ø “Too small” classes à don’t do anything
Ø Have many more strategies than necessary
Ø “Speculative generality”

Nov 8, 2021 Sprenkle - CSCI209 26

26

Design Principle: Loose Coupling

•Loosely coupled objects can interact but have
very little knowledge of each other
ØMinimize dependency between objects
ØMore flexible systems
ØHandle change

Nov 8, 2021 Sprenkle - CSCI209 29

Goal: loosely coupled designs
between objects that interact

29

11/8/21

13

Model - Viewer - Controller (MVC)
•A common design pattern for GUIs
•Loosely coupled
ØModel: application data
ØView: graphical representation
ØController: input processing

Nov 8, 2021 Sprenkle - CSCI209 30

ModelController View
NotifiesModifies

30

Model-Viewer-Controller

•Can have multiple viewers and controllers
•Goal: modify one component without affecting

others

Nov 8, 2021 Sprenkle - CSCI209 31

ModelController View
NotifiesModifies

Model View

Controller

Direct associations

31

11/8/21

14

Model
•Represents application state
•Responsible for managing application state
•Purely functional
ØNothing about how view presented to user

Nov 8, 2021 Sprenkle - CSCI209 32

Model

32

Multiple Views
•Provides graphical components

for model
ØLook & Feel of the application

•User manipulates view
ØInforms controller of change

•Example of multiple views: spreadsheet data
ØRows/columns in spreadsheet
ØPie chart, bar chart, …

Nov 8, 2021 Sprenkle - CSCI209 33

View
View

View

33

11/8/21

15

Controller(s)
•Handles user input
•Update model as user interacts with view
ØCall model’s methods (often mutators)
ØMakes decisions about behavior of model based on UI

•Views are associated with controllers

Nov 8, 2021 Sprenkle - CSCI209 34

ControllerControllerController

34

Discussion: Map MVC to Goblin Game

•Can have multiple viewers and controllers
•Goal: modify one component without affecting

others

Nov 8, 2021 Sprenkle - CSCI209 35

ModelController View
NotifiesModifies

Model View

Controller

Direct associations

35

11/8/21

16

Exam 2 Discussion
•Similar format to Exam 1

ØTimed (70 minutes), online
ØOpen book/notes/slides NOT internet
Ø3 “sections” – very short answer, short answer, applied
ØOpen Friday at 8:30 a.m. through Sunday at 11:59 p.m.

•Content covers through Wednesday’s class
•I will hold office hours during Friday class time

Nov 8, 2021 Sprenkle - CSCI209 36

36

Looking Ahead
•Assignment 7
ØDeadline Thursday at 11:59 p.m.

•Exam: Fri - Sun

Nov 8, 2021 Sprenkle - CSCI209 37

37

