
11/10/21

1

Objectives
•Design Patterns
ØMVC
ØFactory

•Depend upon abstractions
•Understanding a Code Base: ScreenSavers

Nov 10, 2021 Sprenkle - CSCI209 1

1

Unit Testing in Assignment 7
• Remember what you wrote in the testing project analysis

for how to improve your testing
ØMuch sage advice!

• As you’re unit testing (what you can unit test), consider
using a black-box approach to not bias your tests

• If you think you can’t unit test anything, check if your code
can be better designed

• There are automated tools to help with testing user
interaction but they’re beyond the scope of this course

Nov 10, 2021 Sprenkle - CSCI209 2

2

11/10/21

2

Review
1.Why is composition preferred over inheritance?
2.What are design patterns? How are they used?
3.Give examples of design patterns. For each

example
Ø Provide an example of how they apply in recent

examples, assignments, or in the Java library
Ø Name the design principle(s) they adhere to
Ø Describe when you should apply the design pattern,

generally
Nov 10, 2021 Sprenkle - CSCI209 3

3

Review: Design Pattern

•Not a finished design that can be transformed
directly into code

•Description or template for how to solve a problem
that can be used in many different situations
Ø“Experience reuse” rather than code reuse

Nov 10, 2021 Sprenkle - CSCI209 4

General reusable solution to a commonly
occurring problem in software design

4

11/10/21

3

Review

Nov 10, 2021 Sprenkle - CSCI209 5

Bird
FlyBehavior

SoundBehavior
performSound()
performFly()

Duck

UML Diagram

NoFly
performFly()

FlyBehavior
performFly()

FlyHigh
performFly()

SoundBehavior
makeSound()

interface

(Implementations of interface …)

interface

association

QuackBehavior
makeSound()

Strategies

5

•Design Pattern: Composition
ØUsing other objects in your class
Ø“Delegate” responsibilities to this object

•Why is composition preferred over inheritance?
ØInheritance à dependence on parent class

• Only want to depend on things you know won’t change (higher
stability)

ØComposition: Provide different behaviors for your class by
plugging in new object

Nov 10, 2021 Sprenkle - CSCI209 6

Design Principle:
Favor Composition Over Inheritance

6

11/10/21

4

Review: Strategy Design Pattern
•Defines a family of algorithms, encapsulates each

one, and makes them interchangeable
•Allows algorithm/behavior to vary independently

of clients that use it
ØAllows behavior changes at runtime

•Design Principle:

Nov 10, 2021 Sprenkle - CSCI209 7

Favor composition over inheritance

7

Review: Applying Design Patterns
• When should we apply the delegation pattern?

Ø When the requirements or implementations for a responsibility are likely to
change
• Change: Number/types of birds; types of behaviors; or lower-level implementation

details
• When should we apply the strategy pattern?

Ø When there are lots of desired behaviors for one responsibility and they
could change

• When will we know we’ve gone too far (overapplying)? What are some
symptoms to look for?
Ø “Too small” classes à don’t do anything
Ø Have many more strategies than necessary
Ø “Speculative generality”

Nov 10, 2021 Sprenkle - CSCI209 8

8

11/10/21

5

Model - Viewer - Controller (MVC)
•A common design pattern for GUIs
•Loosely coupled
ØModel: application data
ØView: graphical representation
ØController: input processing

Nov 10, 2021 Sprenkle - CSCI209 9

ModelController View
NotifiesModifies

9

Model-Viewer-Controller

•Can have multiple viewers and controllers
•Goal: modify one component without affecting

others

Nov 10, 2021 Sprenkle - CSCI209 10

ModelController View
NotifiesModifies

Model View

Controller

Direct associations

10

11/10/21

6

Model
•Represents application state
•Responsible for managing application state
•Purely functional
ØNothing about how view presented to user

Nov 10, 2021 Sprenkle - CSCI209 11

Model

11

Multiple Views
•Provides graphical components

for model
ØLook & Feel of the application

•User manipulates view
ØInforms controller of change

•Example of multiple views: spreadsheet data
ØRows/columns in spreadsheet
ØPie chart, bar chart, …

Nov 10, 2021 Sprenkle - CSCI209 12

View
View

View

12

11/10/21

7

Controller(s)
•Handles user input
•Update model as user interacts with view
ØCall model’s methods (often mutators)
ØMakes decisions about behavior of model based on UI

•Views are associated with controllers

Nov 10, 2021 Sprenkle - CSCI209 13

ControllerControllerController

13

Discussion: Map MVC to Goblin Game

•Can have multiple viewers and controllers
•Goal: modify one component without affecting

others

Nov 10, 2021 Sprenkle - CSCI209 14

ModelController View
NotifiesModifies

Model View

Controller

Direct associations

14

11/10/21

8

Mapping MVC to Goblin Game
•Model: GamePiece and child classes
•View-Controller: Game
ØView: displaying locations of model
ØImplemented KeyListener
•Key strokes made changes to the Human (Controller)

Nov 10, 2021 Sprenkle - CSCI209 15

public void keyPressed(KeyEvent e) {
int key = e.getKeyCode(); // key pressed
if (key == KeyEvent.VK_UP)

professor.setDirection(0, -1); // move up
if (key == KeyEvent.VK_DOWN)

professor.setDirection(0, 1);
…

15

Example: Music Player

Nov 10, 2021 Sprenkle - CSCI209 16

View Controller

Model

User • Use interface
• Actions go to controller

Controller
manipulates

model
class Player

play()
skip()

export()

Display is updated
“Play new song”

Model tells View
that state has

changed

• See the song display update
• Hear new song playing

Contains state, data,
application logic

Controller tells Player model
to begin playing song

16

11/10/21

9

MVC: Combination of Design Patterns
• Observer

ØViews, Controller notified of Model’s state changes
• Strategy

ØView can plug in different controllers
ØDifferent views of the same model

• Composite
ØView is a composite of GUI components

• Top-level component learns about model update, updates components
• A container computes its preferred size by combining all the preferred

sizes of its components
Nov 10, 2021 Sprenkle - CSCI209 17

17

Summary: Model View Controller (MVC)
•Common design pattern
ØUsed in GUIs, Web Applications
ØHelpful to understand how GUIs are designed

•Combination of design patterns
•Design principles applied
ØLoosely coupled
•Components are aware of each other but not too integrated

ØDepend on abstractions
Nov 10, 2021 Sprenkle - CSCI209 18

18

11/10/21

10

Dependency Inversion Principle

Nov 10, 2021 Sprenkle - CSCI209 19

Depend upon Abstractions

“Inversion” from the way you think

19

Nov 10, 2021 Sprenkle - CSCI209 20

20

11/10/21

11

Dependency Inversion Principle

• High-level components should not depend on low-level
components
ØBoth should depend on abstractions
ØHigh-level: more user-facing
ØLow-level: work horses – doing the work/processing

• Abstractions should not depend upon details.
Details should depend upon abstractions

• “Inversion” from the way you think
Nov 10, 2021 Sprenkle - CSCI209 21

Depend upon abstractions.
Do not depend upon concrete classes.

21

FACTORY DESIGN PATTERN

Nov 10, 2021 Sprenkle - CSCI209 22

22

11/10/21

12

Design Pattern: Factory Methods
•Allows creating objects without specifying exact

(concrete) class of created object
•Often used to refer to any method whose main

purpose is creating objects
•How it works:

1. Define a method for creating objects
2. Child classes override method to specify the derived

type of product that will be created
Nov 10, 2021 Sprenkle - CSCI209 23

23

Factory Method Pattern

Nov 10, 2021 Sprenkle - CSCI209 24

Product Creator
factoryMethod()
anOperation()

ConcreteProduct ConcreteCreator
factoryMethod()

UML Class Diagram

association

interface abstract class

implementationimplementation

Client classes interact with the interfaces

24

11/10/21

13

Dependency Inversion Principle

Nov 10, 2021 Sprenkle - CSCI209 25

Depend upon Abstractions

“Inversion” from the way you think

25

Guidelines to Follow DIP
• No variable should hold a reference to a concrete class

ØUsing new à holding reference to concrete class
ØUse factory instead

• No class should derive from a concrete class
ØWhy? Depends on a concrete class
ØDerive from an interface or abstract class instead

• No method should override an implemented method of its
base class
ØBase class wasn’t an abstraction
ØThose methods are meant to be shared by child classes

Nov 10, 2021 Sprenkle - CSCI209 26What’s a problem with following all of these guidelines?

26

11/10/21

14

Discussion of Abstraction
•What does abstraction allow?

•Are there any limitations to abstraction?

Nov 10, 2021 Sprenkle - CSCI209 27

27

Abstraction Discussion
• Making code abstract makes code easier/more resilient to change
• Examples:

ØMagic number à Constant
• Change constant (once) à changes value everywhere it is used

ØLong method à Extract method(s)
• Method call is an abstraction of the concrete statements

Ø Can change the implementation of the method without breaking the calling
code

ØLarge classàExtract class(es)
• Class encapsulates state/functionality
• Can change implementation of class and not break the code that uses the class

Nov 10, 2021 Sprenkle - CSCI209 28

28

11/10/21

15

Abstract Discussion
•Abstraction makes it (a little) harder to

understand code
ØExamples:
•Need to look up the value of the defined constant
•Need to read a called method’s API or go to its source to

understand what it does

•However, those are relatively low costs and will
get cheaper as you get better at coding

Nov 10, 2021 Sprenkle - CSCI209 29

29

Summary of Designing for Change

•Can depend on code that is stable and unlikely to
change
ØExample of stable code: System.out

Nov 10, 2021 Sprenkle - CSCI209 30

Use abstraction for code
that is likely to change

30

11/10/21

16

SCREENSAVERS
Design patterns in practice

Nov 10, 2021 Sprenkle - CSCI209 31

31

Understanding ScreenSavers Code

•How do you run the code?
•What represents an object in the screen saver?
•How are screen saver objects generated?
•How is animation handled?
•How are events handled?

Nov 10, 2021 Sprenkle - CSCI209 32

32

11/10/21

17

Screensavers GUI/Architecture

Nov 10, 2021 Sprenkle - CSCI209 33

Canvas
Has List of Movers

ButtonPanel

RangeSlider

Timer: Periodically calls
Canvas’s actionPerformed method,
which repaints screen/Movers,
moves Movers

JButton: associated with a
Factory that creates Movers

What does the factory do? Why?
What do you need to do to add screen savers?

33

Dependency Inversion Principle
•How would you typically build/design the screen

saver application?
ØKnow we need to view/display a screen saver
•Buttons, slider, objects that move
•Top-down

ØKnow we need to create a bunch of types of screen
savers
•Abstraction
•Bottom-up

Nov 10, 2021 Sprenkle - CSCI209 34

34

11/10/21

18

One Option for Screen Saver Design

Nov 10, 2021 Sprenkle - CSCI209 35

Bouncer Walker

GUI

Racer

Violates Dependency Inversion Principle:
High-level component (GUI) is dependent on concrete classes.

If implementations change, GUI may have to change

35

Mapping Factory Design Pattern to Screen Savers

•How does the screen saver application use
factory methods?

•What would be the alternative solution?

•What problems are the factories addressing?

Nov 10, 2021 Sprenkle - CSCI209 36

36

11/10/21

19

Mapping Factory Design Pattern to Screen Savers

•What problems are the factories addressing?
ØDelegate creation of concrete Movers
•Likely to change
•Encapsulate change in factory

ØUsing abstraction instead of specifying concrete
classes
•Reduces dependencies to concrete classes

Nov 10, 2021 Sprenkle - CSCI209 37

37

Thoughts
•Didn’t need to know design pattern to

understand code
ØHelps to know the terminology to understand the

naming

•Design principles all come down to
where there is change, use abstraction

Nov 10, 2021 Sprenkle - CSCI209 38

38

11/10/21

20

Our Screen Saver Dependencies

Nov 10, 2021 Sprenkle - CSCI209 39

Mover Canvas Factory

Bouncer BouncerFactory

ButtonPanel

39

Our Screen Saver Dependencies

Nov 10, 2021 Sprenkle - CSCI209 40

Mover Canvas Factory

Bouncer BouncerFactory

ButtonPanel

Note: dependencies
are on abstractions
and classes unlikely

to change

40

11/10/21

21

Exam 2 Discussion
•Similar format to Exam 1

ØTimed (70 minutes), online
ØOpen book/notes/slides NOT internet
Ø3 “sections” – very short answer, short answer, applied
ØOpen Friday at 8:30 a.m. through Sunday at 11:59 p.m.

•Content covers through today’s class
•I will hold office hours during Friday class time

Nov 10, 2021 Sprenkle - CSCI209 41

41

Looking Ahead
•Assignment 7
ØDeadline Thursday at 11:59 p.m.

•Exam: Fri - Sun

Nov 10, 2021 Sprenkle - CSCI209 42

42

